等比数列中项公式

时间:2023-06-08 07:36:19 作者:教学文档 字数:66301字

范文小一网整理等比数列中项公式,旨在帮助更多人解决教学困扰,文章仅供参考,具体需要活学活用才是真正的有所帮助,下面随小编一起来看下相关文章等比数列中项公式吧。

等比数列中项公式

3.4等比数列

3.4等比数列篇1

教学目的:1.灵活应用等比数列的定义及通项公式.2.熟悉等比数列的有关性质,并系统了解判断数列是否成等比数列的方法。教学重点:等比中项的应用及等比数列性质的应用.教学难点:灵活应用等比数列定义、通项公式、性质解决一些相关问题教学过程:一、复习:等比数列的定义、通项公式、等比中项二、讲解新课:1.等比数列的性质:若m+n=p+q,则2.判断等比数列的方法:定义法,中项法,通项公式法3.等比数列的增减性:当q>1,>0或0<q<1,<0时,{}是递增数列;当q>1,<0,或0<q<1,>0时,{}是递减数列;当q=1时,{}是常数列;当q<0时,{}是摆动数列;三、例题讲解例1已知:b是a与c的等比中项,且a、b、c同号,求证:也成等比数列。证明:由题设:b2=ac得:∴也成等比数列例2已知等比数列.例3a≠c,三数a,1,c成等差数列,a,1,c成等比数列,求的值.解:∵a,1,c成等差数列,∴a+c=2,又a,1,c成等比数列,∴ac=1,有ac=1或ac=-1,当ac=1时,由a+c=2得a=1,c=1,与a≠c矛盾,∴ac=-1,a+c=(a+c)-2ac=6,∴=.例4已知无穷数列,求证:这个数列成等比数列这个数列中的任一项是它后面第五项的,这个数列的任意两项的积仍在这个数列中。证:∴该数列成等比数列。,即:。,∵,∴。∴且,∴,。例5设均为非零实数,,求证:成等比数列且公比为。证一:关于的二次方程有实根,∴,∴则必有:,即,∴成等比数列设公比为,则,代入∵,即,即。证二:∵∴∴,∴,且∵非零,∴。四、课后作业:课本p125习题3.410,11,《精讲精练》p126智能达标训练.

3.4等比数列篇2

教学目标

1.理解的概念,掌握的通项公式,并能运用公式解决简单的问题.

正确理解的定义,了解公比的概念,明确一个数列是的限定条件,能根据定义判断一个数列是,了解等比中项的概念;

正确认识使用的表示法,能灵活运用通项公式求的首项、公比、项数及指定的项;

通过通项公式认识的性质,能解决某些实际问题.

2.通过对的研究,逐步培养学生观察、类比、归纳、猜想等思维品质.

3.通过对概念的归纳,进一步培养学生严密的思维习惯,以及实事求是的科学态度.

教学建议

教材分析

知识结构

是另一个简单常见的数列,研究内容可与等差数列类比,首先归纳出的定义,导出通项公式,进而研究图像,又给出等比中项的概念,最后是通项公式的应用.

重点、难点分析

教学重点是的定义和对通项公式的认识与应用,教学难点在于通项公式的推导和运用.

①与等差数列一样,也是特殊的数列,二者有许多相同的性质,但也有明显的区别,可根据定义与通项公式得出的特性,这些是教学的重点.

②虽然在等差数列的学习中曾接触过不完全归纳法,但对学生来说仍然不熟悉;在推导过程中,需要学生有一定的观察分析猜想能力;第一项是否成立又须补充说明,所以通项公式的推导是难点.

③对等差数列、的综合研究离不开通项公式,因而通项公式的灵活运用既是重点又是难点.

教学建议

建议本节课分两课时,一节课为的概念,一节课为通项公式的应用.

概念的引入,可给出几个具体的例子,由学生概括这些数列的相同特征,从而得到的定义.也可将几个等差数列和几个混在一起给出,由学生将这些数列进行分类,有一种是按等差、等比来分的,由此对比地概括的定义.

根据定义让学生分析的公比不为0,以及每一项均不为0的特性,加深对概念的理解.

对比等差数列的表示法,由学生归纳的各种表示法.启发学生用函数观点认识通项公式,由通项公式的结构特征画数列的图象.

由于有了等差数列的研究经验,的研究完全可以放手让学生自己解决,教师只需把握课堂的节奏,作为一节课的组织者出现.

可让学生相互出题,解题,讲题,充分发挥学生的主体作用.

教学设计示例

课题:的概念

教学目标

1.通过教学使学生理解的概念,推导并掌握通项公式.

2.使学生进一步体会类比、归纳的思想,培养学生的观察、概括能力.

3.培养学生勤于思考,实事求是的精神,及严谨的科学态度.

教学重点,难点

重点、难点是的定义的归纳及通项公式的推导.

教学用具

投影仪,多媒体软件,电脑.

教学方法

讨论、谈话法.

教学过程

一、提出问题

给出以下几组数列,将它们分类,说出分类标准.

①-2,1,4,7,10,13,16,19,…

②8,16,32,64,128,256,…

③1,1,1,1,1,1,1,…

④243,81,27,9,3,1,,,…

⑤31,29,27,25,23,21,19,…

⑥1,-1,1,-1,1,-1,1,-1,…

⑦1,-10,100,-1000,10000,-100000,…

⑧0,0,0,0,0,0,0,…

由学生发表意见,统一一种分法,其中②③④⑥⑦为有共同性质的一类数列.

二、讲解新课

请学生说出数列②③④⑥⑦的共同特性,教师指出实际生活中也有许多类似的例子,如变形虫分裂问题.假设每经过一个单位时间每个变形虫都分裂为两个变形虫,再假设开始有一个变形虫,经过一个单位时间它分裂为两个变形虫,经过两个单位时间就有了四个变形虫,…,一直进行下去,记录下每个单位时间的变形虫个数得到了一列数这个数列也具有前面的几个数列的共同特性,这是我们将要研究的另一类数列——.

1.的定义

根据与等差数列的名字的区别与联系,尝试给下定义.学生一般回答可能不够完美,多数情况下,有了等差数列的基础是可以由学生概括出来的.教师写出的定义,标注出重点词语.

请学生指出②③④⑥⑦各自的公比,并思考有无数列既是等差数列又是.学生通过观察可以发现③是这样的数列,教师再追问,还有没有其他的例子,让学生再举两例.而后请学生概括这类数列的一般形式,学生可能说形如的数列都满足既是等差又是,让学生讨论后得出结论:当时,数列既是等差又是,当时,它只是等差数列,而不是.教师追问理由,引出对的认识:

2.对定义的认识

的首项不为0;

的每一项都不为0,即;

问题:一个数列各项均不为0是这个数列为的什么条件?

公比不为0.

数学式子表示的定义.

是①.在这个式子的写法上可能会有一些争议,如写成,可让学生研究行不行,好不好;接下来再问,能否改写为是?为什么不能?

式子给出了数列第项与第项的数量关系,但能否确定一个?确定一个需要几个条件?当给定了首项及公比后,如何求任意一项的值?所以要研究通项公式.

3.的通项公式

问题:用和表示第项.

①不完全归纳法

.

②叠乘法

,…,,这个式子相乘得,所以.

的通项公式

得出通项公式后,让学生思考如何认识通项公式.

对公式的认识

由学生来说,最后归结:

①函数观点;

②方程思想.

这里强调方程思想解决问题.方程中有四个量,知三求一,这是公式最简单的应用,请学生举例.解题格式是什么?

如果增加一个条件,就多知道了一个量,这是公式的更高层次的应用,下节课再研究.同学可以试着编几道题.

三、小结

1.本节课研究了的概念,得到了通项公式;

2.注意在研究内容与方法上要与等差数列相类比;

3.用方程的思想认识通项公式,并加以应用.

四、作业

五、板书设计

三.

1.的定义

2.对定义的认识

3.的通项公式

公式

对公式的认识

探究活动

将一张很大的薄纸对折,对折30次后有多厚?不妨假设这张纸的厚度为0.01毫米.

参考答案:

30次后,厚度为,这个厚度超过了世界最高的山峰——珠穆朗玛峰的高度.如果纸再薄一些,比如纸厚0.001毫米,对折34次就超过珠穆朗玛峰的高度了.还记得国王的承诺吗?第31个格子中的米已经是1073741824粒了,后边的格子中的米就更多了,最后一个格子中的米应是粒,用计算器算一下吧.

3.4等比数列篇3

教学目标

1.理解的概念,掌握的通项公式,并能运用公式解决简单的问题.

正确理解的定义,了解公比的概念,明确一个数列是的限定条件,能根据定义判断一个数列是,了解等比中项的概念;

正确认识使用的表示法,能灵活运用通项公式求的首项、公比、项数及指定的项;

通过通项公式认识的性质,能解决某些实际问题.

2.通过对的研究,逐步培养学生观察、类比、归纳、猜想等思维品质.

3.通过对概念的归纳,进一步培养学生严密的思维习惯,以及实事求是的科学态度.

教学建议

教材分析

知识结构

是另一个简单常见的数列,研究内容可与等差数列类比,首先归纳出的定义,导出通项公式,进而研究图像,又给出等比中项的概念,最后是通项公式的应用.

重点、难点分析

教学重点是的定义和对通项公式的认识与应用,教学难点在于通项公式的推导和运用.

①与等差数列一样,也是特殊的数列,二者有许多相同的性质,但也有明显的区别,可根据定义与通项公式得出的特性,这些是教学的重点.

②虽然在等差数列的学习中曾接触过不完全归纳法,但对学生来说仍然不熟悉;在推导过程中,需要学生有一定的观察分析猜想能力;第一项是否成立又须补充说明,所以通项公式的推导是难点.

③对等差数列、的综合研究离不开通项公式,因而通项公式的灵活运用既是重点又是难点.

教学建议

建议本节课分两课时,一节课为的概念,一节课为通项公式的应用.

概念的引入,可给出几个具体的例子,由学生概括这些数列的相同特征,从而得到的定义.也可将几个等差数列和几个混在一起给出,由学生将这些数列进行分类,有一种是按等差、等比来分的,由此对比地概括的定义.

根据定义让学生分析的公比不为0,以及每一项均不为0的特性,加深对概念的理解.

对比等差数列的表示法,由学生归纳的各种表示法.启发学生用函数观点认识通项公式,由通项公式的结构特征画数列的图象.

由于有了等差数列的研究经验,的研究完全可以放手让学生自己解决,教师只需把握课堂的节奏,作为一节课的组织者出现.

可让学生相互出题,解题,讲题,充分发挥学生的主体作用.

教学设计示例

课题:的概念

教学目标

1.通过教学使学生理解的概念,推导并掌握通项公式.

2.使学生进一步体会类比、归纳的思想,培养学生的观察、概括能力.

3.培养学生勤于思考,实事求是的精神,及严谨的科学态度.

教学重点,难点

重点、难点是的定义的归纳及通项公式的推导.

教学用具

投影仪,多媒体软件,电脑.

教学方法

讨论、谈话法.

教学过程

一、提出问题

给出以下几组数列,将它们分类,说出分类标准.

①-2,1,4,7,10,13,16,19,…

②8,16,32,64,128,256,…

③1,1,1,1,1,1,1,…

④243,81,27,9,3,1,,,…

⑤31,29,27,25,23,21,19,…

⑥1,-1,1,-1,1,-1,1,-1,…

⑦1,-10,100,-1000,10000,-100000,…

⑧0,0,0,0,0,0,0,…

由学生发表意见,统一一种分法,其中②③④⑥⑦为有共同性质的一类数列.

二、讲解新课

请学生说出数列②③④⑥⑦的共同特性,教师指出实际生活中也有许多类似的例子,如变形虫分裂问题.假设每经过一个单位时间每个变形虫都分裂为两个变形虫,再假设开始有一个变形虫,经过一个单位时间它分裂为两个变形虫,经过两个单位时间就有了四个变形虫,…,一直进行下去,记录下每个单位时间的变形虫个数得到了一列数这个数列也具有前面的几个数列的共同特性,这是我们将要研究的另一类数列——.

1.的定义

根据与等差数列的名字的区别与联系,尝试给下定义.学生一般回答可能不够完美,多数情况下,有了等差数列的基础是可以由学生概括出来的.教师写出的定义,标注出重点词语.

请学生指出②③④⑥⑦各自的公比,并思考有无数列既是等差数列又是.学生通过观察可以发现③是这样的数列,教师再追问,还有没有其他的例子,让学生再举两例.而后请学生概括这类数列的一般形式,学生可能说形如的数列都满足既是等差又是,让学生讨论后得出结论:当时,数列既是等差又是,当时,它只是等差数列,而不是.教师追问理由,引出对的认识:

2.对定义的认识

的首项不为0;

的每一项都不为0,即;

问题:一个数列各项均不为0是这个数列为的什么条件?

公比不为0.

数学式子表示的定义.

是①.在这个式子的写法上可能会有一些争议,如写成,可让学生研究行不行,好不好;接下来再问,能否改写为是?为什么不能?

式子给出了数列第项与第项的数量关系,但能否确定一个?确定一个需要几个条件?当给定了首项及公比后,如何求任意一项的值?所以要研究通项公式.

3.的通项公式

问题:用和表示第项.

①不完全归纳法

.

②叠乘法

,…,,这个式子相乘得,所以.

的通项公式

得出通项公式后,让学生思考如何认识通项公式.

对公式的认识

由学生来说,最后归结:

①函数观点;

②方程思想.

这里强调方程思想解决问题.方程中有四个量,知三求一,这是公式最简单的应用,请学生举例.解题格式是什么?

如果增加一个条件,就多知道了一个量,这是公式的更高层次的应用,下节课再研究.同学可以试着编几道题.

三、小结

1.本节课研究了的概念,得到了通项公式;

2.注意在研究内容与方法上要与等差数列相类比;

3.用方程的思想认识通项公式,并加以应用.

四、作业

五、板书设计

三.

1.的定义

2.对定义的认识

3.的通项公式

公式

对公式的认识

探究活动

将一张很大的薄纸对折,对折30次后有多厚?不妨假设这张纸的厚度为0.01毫米.

参考答案:

30次后,厚度为,这个厚度超过了世界最高的山峰——珠穆朗玛峰的高度.如果纸再薄一些,比如纸厚0.001毫米,对折34次就超过珠穆朗玛峰的高度了.还记得国王的承诺吗?第31个格子中的米已经是1073741824粒了,后边的格子中的米就更多了,最后一个格子中的米应是粒,用计算器算一下吧.

3.4等比数列篇4

教学目的:1.掌握等比数列的定义.2.理解等比数列的通项公式及推导;理解等比中项概念.教学重点:等比数列的定义及通项公式教学难点:灵活应用定义式及通项公式解决相关问题教学过程:一、复习引入:1.等差数列的定义:-=d,2.等差数列的通项公式:3.几种计算公差d的方法:d=-==4.等差中项:成等差数列二、讲解新课:下面我们来看这样几个数列,看其又有何共同特点?1,2,4,8,16,…,263;①5,25,125,625,…;②1,-,…;③对于数列①,=;=2对于数列②,=;=5对于数列③,=·;共同特点:从第二项起,每一项与前一项的比都等于同一个常数

1.等比数列:一般地,如果一个数列从第二项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列.这个常数叫做等比数列的公比;公比通常用字母q表示,即:{}成等比数列=q注意:等比数列的定义隐含了任一项2.等比数列的通项公式1:由等比数列的定义,有:;;;…………………3.等比数列的通项公式2:4.既是等差又是等比数列的数列:非零常数列.5.等比中项:如果在a与b中间插入一个数g,使a,g,b成等比数列,那么称这个数g为a与b的等比中项.即g=±a,g,b成等比数列g=ab三、例题例1课本p123例1,请同学们认真阅读题目,并自己动手解题.例2一个等比数列的第3项与第4项分别是12与18,求它的第1项与第2项.例3求下列各等比数列的通项公式:1.=-2,=-82.=5,且2=-3例4.求数列=5,且的通项公式解:以上各式相乘得:例5.已知{an}、{bn}是项数相同的等比数列,求证是等比数列.四、练习:1.求下面等比数列的第4项与第5项:5,-15,45,……;1.2,2.4,4.8,……;,…….2.一个等比数列的第9项是,公比是-,求它的第1项.五、作业:课本p125习题3.41,2,5,6,7,8,9.

3.4等比数列篇5

教学目标

1.理解的概念,掌握的通项公式,并能运用公式解决简单的问题.

正确理解的定义,了解公比的概念,明确一个数列是的限定条件,能根据定义判断一个数列是,了解等比中项的概念;

正确认识使用的表示法,能灵活运用通项公式求的首项、公比、项数及指定的项;

通过通项公式认识的性质,能解决某些实际问题.

2.通过对的研究,逐步培养学生观察、类比、归纳、猜想等思维品质.

3.通过对概念的归纳,进一步培养学生严密的思维习惯,以及实事求是的科学态度.

教学建议

教材分析

知识结构

是另一个简单常见的数列,研究内容可与等差数列类比,首先归纳出的定义,导出通项公式,进而研究图像,又给出等比中项的概念,最后是通项公式的应用.

重点、难点分析

教学重点是的定义和对通项公式的认识与应用,教学难点在于通项公式的推导和运用.

①与等差数列一样,也是特殊的数列,二者有许多相同的性质,但也有明显的区别,可根据定义与通项公式得出的特性,这些是教学的重点.

②虽然在等差数列的学习中曾接触过不完全归纳法,但对学生来说仍然不熟悉;在推导过程中,需要学生有一定的观察分析猜想能力;第一项是否成立又须补充说明,所以通项公式的推导是难点.

③对等差数列、的综合研究离不开通项公式,因而通项公式的灵活运用既是重点又是难点.

教学建议

建议本节课分两课时,一节课为的概念,一节课为通项公式的应用.

概念的引入,可给出几个具体的例子,由学生概括这些数列的相同特征,从而得到的定义.也可将几个等差数列和几个混在一起给出,由学生将这些数列进行分类,有一种是按等差、等比来分的,由此对比地概括的定义.

根据定义让学生分析的公比不为0,以及每一项均不为0的特性,加深对概念的理解.

对比等差数列的表示法,由学生归纳的各种表示法.启发学生用函数观点认识通项公式,由通项公式的结构特征画数列的图象.

由于有了等差数列的研究经验,的研究完全可以放手让学生自己解决,教师只需把握课堂的节奏,作为一节课的组织者出现.

可让学生相互出题,解题,讲题,充分发挥学生的主体作用.

教学设计示例

课题:的概念

教学目标

1.通过教学使学生理解的概念,推导并掌握通项公式.

2.使学生进一步体会类比、归纳的思想,培养学生的观察、概括能力.

3.培养学生勤于思考,实事求是的精神,及严谨的科学态度.

教学重点,难点

重点、难点是的定义的归纳及通项公式的推导.

教学用具

投影仪,多媒体软件,电脑.

教学方法

讨论、谈话法.

教学过程

一、提出问题

给出以下几组数列,将它们分类,说出分类标准.

①-2,1,4,7,10,13,16,19,…

②8,16,32,64,128,256,…

③1,1,1,1,1,1,1,…

④243,81,27,9,3,1,,,…

⑤31,29,27,25,23,21,19,…

⑥1,-1,1,-1,1,-1,1,-1,…

⑦1,-10,100,-1000,10000,-100000,…

⑧0,0,0,0,0,0,0,…

由学生发表意见,统一一种分法,其中②③④⑥⑦为有共同性质的一类数列.

二、讲解新课

请学生说出数列②③④⑥⑦的共同特性,教师指出实际生活中也有许多类似的例子,如变形虫分裂问题.假设每经过一个单位时间每个变形虫都分裂为两个变形虫,再假设开始有一个变形虫,经过一个单位时间它分裂为两个变形虫,经过两个单位时间就有了四个变形虫,…,一直进行下去,记录下每个单位时间的变形虫个数得到了一列数这个数列也具有前面的几个数列的共同特性,这是我们将要研究的另一类数列——.

1.的定义

根据与等差数列的名字的区别与联系,尝试给下定义.学生一般回答可能不够完美,多数情况下,有了等差数列的基础是可以由学生概括出来的.教师写出的定义,标注出重点词语.

请学生指出②③④⑥⑦各自的公比,并思考有无数列既是等差数列又是.学生通过观察可以发现③是这样的数列,教师再追问,还有没有其他的例子,让学生再举两例.而后请学生概括这类数列的一般形式,学生可能说形如的数列都满足既是等差又是,让学生讨论后得出结论:当时,数列既是等差又是,当时,它只是等差数列,而不是.教师追问理由,引出对的认识:

2.对定义的认识

的首项不为0;

的每一项都不为0,即;

问题:一个数列各项均不为0是这个数列为的什么条件?

公比不为0.

数学式子表示的定义.

是①.在这个式子的写法上可能会有一些争议,如写成,可让学生研究行不行,好不好;接下来再问,能否改写为是?为什么不能?

式子给出了数列第项与第项的数量关系,但能否确定一个?确定一个需要几个条件?当给定了首项及公比后,如何求任意一项的值?所以要研究通项公式.

3.的通项公式

问题:用和表示第项.

①不完全归纳法

.

②叠乘法

,…,,这个式子相乘得,所以.

的通项公式

得出通项公式后,让学生思考如何认识通项公式.

对公式的认识

由学生来说,最后归结:

①函数观点;

②方程思想.

这里强调方程思想解决问题.方程中有四个量,知三求一,这是公式最简单的应用,请学生举例.解题格式是什么?

如果增加一个条件,就多知道了一个量,这是公式的更高层次的应用,下节课再研究.同学可以试着编几道题.

三、小结

1.本节课研究了的概念,得到了通项公式;

2.注意在研究内容与方法上要与等差数列相类比;

3.用方程的思想认识通项公式,并加以应用.

四、作业

五、板书设计

三.

1.的定义

2.对定义的认识

3.的通项公式

公式

对公式的认识

探究活动

将一张很大的薄纸对折,对折30次后有多厚?不妨假设这张纸的厚度为0.01毫米.

参考答案:

30次后,厚度为,这个厚度超过了世界最高的山峰——珠穆朗玛峰的高度.如果纸再薄一些,比如纸厚0.001毫米,对折34次就超过珠穆朗玛峰的高度了.还记得国王的承诺吗?第31个格子中的米已经是1073741824粒了,后边的格子中的米就更多了,最后一个格子中的米应是粒,用计算器算一下吧.

3.4等比数列篇6

教学目标1.熟练运用等差、等比数列的概念、通项公式、前n项和式以及有关性质,分析和解决等差、等比数列的综合问题.2.突出方程思想的应用,引导学生选择简捷合理的运算途径,提高运算速度和运算能力.3.用类比思想加深对等差数列与等比数列概念和性质的理解.教学重点与难点用方程的观点认识等差、等比数列的基础知识,从本质上掌握公式.例题例1三个互不相等的实数成等差数列,如果适当排列这三个数也可以成等比数列,又知这三个数的和为6,求这三个数。例2数列中,,,,,……,求的值。例3有四个数,前三个数成等比数列,后三个数成等差数列,首末两个数之和是21,中间两个数的和是18,求这四个数.例4已知数列的前项的和,求数列前项的和.例5是否存在等比数列,其前项的和组成的数列也是等比数列?例6数列是首项为0的等差数列,数列是首项为1的等比数列,设

,数列的前三项依次为1,1,2,

求数列、的通项公式;

求数列的前10项的和。例7已知数列满足,,.

(1)求证:数列是等比数列;

(2)求的表达式和的表达式.

作业:

1.已知同号,则是成等比数列的

充分而不必要条件必要而不充分条件

充要条件既不充分而也不必要条件

2.如果和是两个等差数列,其中,那么等于

3

3.若某等比数列中,前7项和为48,前14项和为60,则前21项和为

(a)180(b)108(c)75(d)63

4.已知数列,对所有,其前项的积为,求的值,

5.已知为等差数列,前10项的和为,前100项的和为,求前110项的和

6.等差数列中,,,依次抽出这个数列的第项,组成数列,求数列的通项公式和前项和公式.

7.已知数列,,

求通项公式;

若,求数列的最小项的值;

数列的前项和为,求数列前项的和.

8.三数成等比数列,若第二个数加4就成等差数列,再把这个等差数列的第三个数加上32又成等比数列,求这三个数.

3.4等比数列篇7

教学目标

1.把握等比数列前项和公式,并能运用公式解决简单的问题.

(1)理解公式的推导过程,体会转化的思想;

(2)用方程的思想熟悉等比数列前项和公式,利用公式知三求一;与通项公式结合知三求二;

2.通过公式的灵活运用,进一步渗透方程的思想、分类讨论的思想、等价转化的思想.

3.通过公式推导的教学,对学生进行思维的严谨性的练习,培养他们实事求是的科学态度.

教学建议

教材分析

(1)知识结构

先用错位相减法推出等比数列前项和公式,而后运用公式解决一些问题,并将通项公式与前项和公式结合解决问题,还要用错位相减法求一些数列的前项和.

(2)重点、难点分析

教学重点、难点是等比数列前项和公式的推导与应用.公式的推导中蕴含了丰富的数学思想、方法(如分类讨论思想,错位相减法等),这些思想方法在其他数列求和问题中多有涉及,所以对等比数列前项和公式的要求,不单是要记住公式,更重要的是把握推导公式的方法.等比数列前项和公式是分情况讨论的,在运用中要非凡注重和两种情况.

教学建议

(1)本节内容分为两课时,一节为等比数列前项和公式的推导与应用,一节为通项公式与前项和公式的综合运用,另外应补充一节数列求和问题.

(2)等比数列前项和公式的推导是重点内容,引导学生观察实例,发现规律,归纳总结,证实结论.

(3)等比数列前项和公式的推导的其他方法可以给出,提高学生学习的爱好.

(4)编拟例题时要全面,不要忽略的情况.

(5)通项公式与前项和公式的综合运用涉及五个量,已知其中三个量可求另两个量,但解指数方程难度大.

(6)补充可以化为等差数列、等比数列的数列求和问题.

教学设计示例

课题:等比数列前项和的公式

教学目标

(1)通过教学使学生把握等比数列前项和公式的推导过程,并能初步运用这一方法求一些数列的前项和.

(2)通过公式的推导过程,培养学生猜想、分析、综合能力,提高学生的数学素质.

(3)通过教学进一步渗透从非凡到一般,再从一般到非凡的辩证观点,培养学生严谨的学习态度.

教学重点,难点

教学重点是公式的推导及运用,难点是公式推导的思路.

教学用具

幻灯片,课件,电脑.

教学方法

引导发现法.

教学过程

一、新课引入:

(问题见教材第129页)提出问题:(幻灯片)

二、新课讲解:

记,式中有64项,后项与前项的比为公比2,当每一项都乘以2后,中间有62项是对应相等的,作差可以相互抵消.

(板书)即,①

,②

②-①得即.

由此对于一般的等比数列,其前项和,如何化简?

(板书)等比数列前项和公式

仿照公比为2的等比数列求和方法,等式两边应同乘以等比数列的公比,即

(板书)③两端同乘以,得

④,

③-④得⑤,(提问学生如何处理,适时提醒学生注重的取值)

当时,由③可得(不必导出④,但当时设想不到)

当时,由⑤得.

于是

反思推导求和公式的方法——错位相减法,可以求形如的数列的和,其中为等差数列,为等比数列.

(板书)例题:求和:.

设,其中为等差数列,为等比数列,公比为,利用错位相减法求和.

解:,

两端同乘以,得

,

两式相减得

于是.

说明:错位相减法实际上是把一个数列求和问题转化为等比数列求和的问题.

公式其它应用问题注重对公比的分类讨论即可.

三、小结:

1.等比数列前项和公式推导中蕴含的思想方法以及公式的应用;

2.用错位相减法求一些数列的前项和.

四、作业:略.

五、板书设计:

等比数列前项和公式例题

3.4等比数列篇8

教学设计示例

课题:等比数列前项和的公式

教学目标

通过教学使学生掌握等比数列前项和公式的推导过程,并能初步运用这一方法求一些数列的前项和.

通过公式的推导过程,培养学生猜想、分析、综合能力,提高学生的数学素质.

通过教学进一步渗透从特殊到一般,再从一般到特殊的辩证观点,培养学生严谨的学习态度.

教学重点,难点

教学重点是公式的推导及运用,难点是公式推导的思路.

教学用具

幻灯片,课件,电脑.

教学方法

引导发现法.

教学过程

一、新课引入:

提出问题:

二、新课讲解:

记,式中有64项,后项与前项的比为公比2,当每一项都乘以2后,中间有62项是对应相等的,作差可以相互抵消.

即,①

,②

②-①得即.

由此对于一般的等比数列,其前项和,如何化简?

等比数列前项和公式

仿照公比为2的等比数列求和方法,等式两边应同乘以等比数列的公比,即

③两端同乘以,得

④,

③-④得⑤,

当时,由③可得

当时,由⑤得.

于是

反思推导求和公式的方法——错位相减法,可以求形如的数列的和,其中为等差数列,为等比数列.

例题:求和:.

设,其中为等差数列,为等比数列,公比为,利用错位相减法求和.

解:,

两端同乘以,得

两式相减得

于是.

说明:错位相减法实际上是把一个数列求和问题转化为等比数列求和的问题.

公式其它应用问题注意对公比的分类讨论即可.

三、小结:

1.等比数列前项和公式推导中蕴含的思想方法以及公式的应用;

2.用错位相减法求一些数列的前项和.

四、作业:略.

五、板书设计:

等比数列前项和公式例题

3.4等比数列篇9

教学目标

1.掌握等比数列前项和公式,并能运用公式解决简单的问题.

理解公式的推导过程,体会转化的思想;

用方程的思想认识等比数列前项和公式,利用公式知三求一;与通项公式结合知三求二;

2.通过公式的灵活运用,进一步渗透方程的思想、分类讨论的思想、等价转化的思想.

3.通过公式推导的教学,对学生进行思维的严谨性的训练,培养他们实事求是的科学态度.

教学建议

教材分析

知识结构

先用错位相减法推出等比数列前项和公式,而后运用公式解决一些问题,并将通项公式与前项和公式结合解决问题,还要用错位相减法求一些数列的前项和.

重点、难点分析

教学重点、难点是等比数列前项和公式的推导与应用.公式的推导中蕴含了丰富的数学思想、方法,这些思想方法在其他数列求和问题中多有涉及,所以对等比数列前项和公式的要求,不单是要记住公式,更重要的是掌握推导公式的方法.等比数列前项和公式是分情况讨论的,在运用中要特别注意和两种情况.

教学建议

本节内容分为两课时,一节为等比数列前项和公式的推导与应用,一节为通项公式与前项和公式的综合运用,另外应补充一节数列求和问题.

等比数列前项和公式的推导是重点内容,引导学生观察实例,发现规律,归纳总结,证明结论.

等比数列前项和公式的推导的其他方法可以给出,提高学生学习的兴趣.

编拟例题时要全面,不要忽略的情况.

通项公式与前项和公式的综合运用涉及五个量,已知其中三个量可求另两个量,但解指数方程难度大.

补充可以化为等差数列、等比数列的数列求和问题.

教学设计示例

课题:等比数列前项和的公式

教学目标

通过教学使学生掌握等比数列前项和公式的推导过程,并能初步运用这一方法求一些数列的前项和.

通过公式的推导过程,培养学生猜想、分析、综合能力,提高学生的数学素质.

通过教学进一步渗透从特殊到一般,再从一般到特殊的辩证观点,培养学生严谨的学习态度.

教学重点,难点

教学重点是公式的推导及运用,难点是公式推导的思路.

教学用具

幻灯片,课件,电脑.

教学方法

引导发现法.

教学过程

一、新课引入:

提出问题:

二、新课讲解:

记,式中有64项,后项与前项的比为公比2,当每一项都乘以2后,中间有62项是对应相等的,作差可以相互抵消.

即,①

,②

②-①得即.

由此对于一般的等比数列,其前项和,如何化简?

等比数列前项和公式

仿照公比为2的等比数列求和方法,等式两边应同乘以等比数列的公比,即

③两端同乘以,得

④,

③-④得⑤,

当时,由③可得

当时,由⑤得.

于是

反思推导求和公式的方法——错位相减法,可以求形如的数列的和,其中为等差数列,为等比数列.

例题:求和:.

设,其中为等差数列,为等比数列,公比为,利用错位相减法求和.

解:,

两端同乘以,得

两式相减得

于是.

说明:错位相减法实际上是把一个数列求和问题转化为等比数列求和的问题.

公式其它应用问题注意对公比的分类讨论即可.

三、小结:

1.等比数列前项和公式推导中蕴含的思想方法以及公式的应用;

2.用错位相减法求一些数列的前项和.

四、作业:略.

五、板书设计

等比数列前项和公式例题

3.4等比数列篇10

教学目标

1.掌握等比数列前项和公式,并能运用公式解决简单的问题.

理解公式的推导过程,体会转化的思想;

用方程的思想认识等比数列前项和公式,利用公式知三求一;与通项公式结合知三求二;

2.通过公式的灵活运用,进一步渗透方程的思想、分类讨论的思想、等价转化的思想.

3.通过公式推导的教学,对学生进行思维的严谨性的训练,培养他们实事求是的科学态度.

教学建议

教材分析

知识结构

先用错位相减法推出等比数列前项和公式,而后运用公式解决一些问题,并将通项公式与前项和公式结合解决问题,还要用错位相减法求一些数列的前项和.

重点、难点分析

教学重点、难点是等比数列前项和公式的推导与应用.公式的推导中蕴含了丰富的数学思想、方法,这些思想方法在其他数列求和问题中多有涉及,所以对等比数列前项和公式的要求,不单是要记住公式,更重要的是掌握推导公式的方法.等比数列前项和公式是分情况讨论的,在运用中要特别注意和两种情况.

教学建议

本节内容分为两课时,一节为等比数列前项和公式的推导与应用,一节为通项公式与前项和公式的综合运用,另外应补充一节数列求和问题.

等比数列前项和公式的推导是重点内容,引导学生观察实例,发现规律,归纳总结,证明结论.

等比数列前项和公式的推导的其他方法可以给出,提高学生学习的兴趣.

编拟例题时要全面,不要忽略的情况.

通项公式与前项和公式的综合运用涉及五个量,已知其中三个量可求另两个量,但解指数方程难度大.

补充可以化为等差数列、等比数列的数列求和问题.

教学设计示例

课题:等比数列前项和的公式

教学目标

通过教学使学生掌握等比数列前项和公式的推导过程,并能初步运用这一方法求一些数列的前项和.

通过公式的推导过程,培养学生猜想、分析、综合能力,提高学生的数学素质.

通过教学进一步渗透从特殊到一般,再从一般到特殊的辩证观点,培养学生严谨的学习态度.

教学重点,难点

教学重点是公式的推导及运用,难点是公式推导的思路.

教学用具

幻灯片,课件,电脑.

教学方法

引导发现法.

教学过程

一、新课引入:

提出问题:

二、新课讲解:

记,式中有64项,后项与前项的比为公比2,当每一项都乘以2后,中间有62项是对应相等的,作差可以相互抵消.

即,①

,②

②-①得即.

由此对于一般的等比数列,其前项和,如何化简?

等比数列前项和公式

仿照公比为2的等比数列求和方法,等式两边应同乘以等比数列的公比,即

③两端同乘以,得

④,

③-④得⑤,

当时,由③可得

当时,由⑤得.

于是

反思推导求和公式的方法——错位相减法,可以求形如的数列的和,其中为等差数列,为等比数列.

例题:求和:.

设,其中为等差数列,为等比数列,公比为,利用错位相减法求和.

解:,

两端同乘以,得

两式相减得

于是.

说明:错位相减法实际上是把一个数列求和问题转化为等比数列求和的问题.

公式其它应用问题注意对公比的分类讨论即可.

三、小结:

1.等比数列前项和公式推导中蕴含的思想方法以及公式的应用;

2.用错位相减法求一些数列的前项和.

四、作业:略.

五、板书设计

等比数列前项和公式例题

3.4等比数列篇11

第三章第五节)一、教材分析1.从在教材中的地位与作用来看《等比数列的前n项和》是数列这一章中的一个重要内容,它不仅在现实生活中有着广泛的实际应用,如储蓄、分期付款的有关计算等等,而且公式推导过程中所渗透的类比、化归、分类讨论、整体变换和方程等思想方法,都是学生今后学习和工作中必备的数学素养.2.从学生认知角度看从学生的思维特点看,很容易把本节内容与等差数列前n项和从公式的形成、特点等方面进行类比,这是积极因素,应因势利导.不利因素是:本节公式的推导与等差数列前n项和公式的推导有着本质的不同,这对学生的思维是一个突破,另外,对于q=1这一特殊情况,学生往往容易忽视,尤其是在后面使用的过程中容易出错.3.学情分析教学对象是刚进入高中的学生,虽然具有一定的分析问题和解决问题的能力,逻辑思维能力也初步形成,但由于年龄的原因,思维尽管活跃、敏捷,却缺乏冷静、深刻,因此片面、不严谨.4.重点、难点教学重点:公式的推导、公式的特点和公式的运用.教学难点:公式的推导方法和公式的灵活运用.公式推导所使用的“错位相减法”是高中数学数列求和方法中最常用的方法之一,它蕴含了重要的数学思想,所以既是重点也是难点.二、目标分析知识与技能目标:理解并掌握等比数列前n项和公式的推导过程、公式的特点,在此基础上能初步应用公式解决与之有关的问题.过程与方法目标:通过对公式推导方法的探索与发现,向学生渗透特殊到一般、类比与转化、分类讨论等数学思想,培养学生观察、比较、抽象、概括等逻辑思维能力和逆向思维的能力.情感与态度价值观:通过对公式推导方法的探索与发现,优化学生的思维品质,渗透事物之间等价转化和理论联系实际的辩证唯物主义观点.三、过程分析学生是认知的主体,设计教学过程必须遵循学生的认知规律,尽可能地让学生去经历知识的形成与发展过程,结合本节课的特点,我设计了如下的教学过程:1.创设情境,提出问题在古印度,有个名叫西萨的人,发明了国际象棋,当时的印度国王大为赞赏,对他说:我可以满足你的任何要求.西萨说:请给我棋盘的64个方格上,第一格放1粒小麦,第二格放2粒,第三格放4粒,往后每一格都是前一格的两倍,直至第64格.国王令宫廷数学家计算,结果出来后,国王大吃一惊.为什么呢?设计意图:设计这个情境目的是在引入课题的同时激发学生的兴趣,调动学习的积极性.故事内容紧扣本节课的主题与重点.此时我问:同学们,你们知道西萨要的是多少粒小麦吗?引导学生写出麦粒总数.带着这样的问题,学生会动手算了起来,他们想到用计算器依次算出各项的值,然后再求和.这时我对他们的这种思路给予肯定.设计意图:在实际教学中,由于受课堂时间限制,教师舍不得花时间让学生去做所谓的“无用功”,急急忙忙地抛出“错位相减法”,这样做有悖学生的认知规律:求和就想到相加,这是合乎逻辑顺理成章的事,教师为什么不相加而马上相减呢?在整个教学关键处学生难以转过弯来,因而在教学中应舍得花时间营造知识形成过程的氛围,突破学生学习的障碍.同时,形成繁难的情境激起了学生的求知欲,迫使学生急于寻求解决问题的新方法,为后面的教学埋下伏笔.2.师生互动,探究问题在肯定他们的思路后,我接着问:1,2,22,…,263是什么数列?有何特征?应归结为什么数学问题呢?探讨1:,记为式,注意观察每一项的特征,有何联系?探讨2:如果我们把每一项都乘以2,就变成了它的后一项,式两边同乘以2则有,记为式.比较(2)两式,你有什么发现?设计意图:留出时间让学生充分地比较,等比数列前n项和的公式推导关键是变“加”为“减”,在教师看来这是“天经地义”的,但在学生看来却是“不可思议”的,因此教学中应着力在这儿做文章,从而抓住培养学生的辩证思维能力的良好契机.经过比较、研究,学生发现:、两式有许多相同的项,把两式相减,相同的项就消去了,得到:.老师指出:这就是错位相减法,并要求学生纵观全过程,反思:为什么式两边要同乘以2呢?设计意图:经过繁难的计算之苦后,突然发现上述解法,不禁惊呼:真是太简洁了!让学生在探索过程中,充分感受到成功的情感体验,从而增强学习数学的兴趣和学好数学的信心.3.类比联想,解决问题这时我再顺势引导学生将结论一般化,这里,让学生自主完成,并喊一名学生上黑板,然后对个别学生进行指导.设计意图:在教师的指导下,让学生从特殊到一般,从已知到未知,步步深入,让学生自己探究公式,从而体验到学习的愉快和成就感.对不对?这里的q能不能等于1?等比数列中的公比能不能为1?q=1时是什么数列?此时sn=?再次追问:结合等比数列的通项公式an=a1qn-1,如何把sn用a1、an、q表示出来?设计意图:通过反问精讲,一方面使学生加深对知识的认识,完善知识结构,另一方面使学生由简单地模仿和接受,变为对知识的主动认识,从而进一步提高分析、类比和综合的能力.这一环节非常重要,尽管时间有时比较少,甚至仅仅几句话,然而却有画龙点睛之妙用.4.讨论交流,延伸拓展在此基础上,我提出:探究等比数列前n项和公式,还有其它方法吗?我们知道,那么我们能否利用这个关系而求出sn呢?根据等比数列的定义又有,能否联想到等比定理从而求出sn呢?设计意图:以疑导思,激发学生的探索欲望,营造一个让学生主动观察、思考、讨论的氛围.以上两种方法都可以化归到,这其实就是关于的一个递推式,递推数列有非常重要的研究价值,是研究性学习和课外拓展的极佳资源,它源于课本,又高于课本,对学生的思维发展有促进作用.5.变式训练,深化认识

首先,学生独立思考,自主解题,再请学生上台来幻灯演示他们的解答,其它同学进行评价,然后师生共同进行总结.设计意图:采用变式教学设计题组,深化学生对公式的认识和理解,通过直接套用公式、变式运用公式、研究公式特点这三个层次的问题解决,促进学生新的数学认知结构的形成.通过以上形式,让全体学生都参与教学,以此培养学生的参与意识和竞争意识.6.例题讲解,形成技能

设计意图:解题时,以学生分析为主,教师适时给予点拨,该题有意培养学生对含有参数的问题进行分类讨论的数学思想.7.总结归纳,加深理解以问题的形式出现,引导学生回顾公式、推导方法,鼓励学生积极回答,然后老师再从知识点及数学思想方法两方面总结.设计意图:以此培养学生的口头表达能力,归纳概括能力.8.故事结束,首尾呼应最后我们回到故事中的问题,我们可以计算出国王奖赏的小麦约为1.84×1019粒,大约7000亿吨,用这么多小麦能从地球到太阳铺设一条宽10米、厚8米的大道,大约是全世界一年粮食产量的459倍,显然国王兑现不了他的承诺.设计意图:把引入课题时的悬念给予释疑,有助于学生克服疲倦、继续积极思维.9.课后作业,分层练习必做:p129练习1、2、3、4选作:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”这首中国古诗的答案是多少?设计意图:出选作题的目的是注意分层教学和因材施教,让学有余力的学生有思考的空间.四、教法分析对公式的教学,要使学生掌握与理解公式的来龙去脉,掌握公式的推导方法,理解公式的成立条件,充分体现公式之间的联系.在教学中,我采用“问题――探究”的教学模式,把整个课堂分为呈现问题、探索规律、总结规律、应用规律四个阶段.利用多媒体辅助教学,直观地反映了教学内容,使学生思维活动得以充分展开,从而优化了教学过程,大大提高了课堂教学效率.五、评价分析本节课通过三种推导方法的研究,使学生从不同的思维角度掌握了等比数列前n项和公式.错位相减:变加为减,等价转化;递推思想:纵横联系,揭示本质;等比定理:回归定义,自然朴实.学生从中深刻地领会到推导过程中所蕴含的数学思想,培养了学生思维的深刻性、敏锐性、广阔性、批判性.同时通过精讲一题,发散一串的变式教学,使学生既巩固了知识,又形成了技能.在此基础上,通过民主和谐的课堂氛围,培养了学生自主学习、合作交流的学习习惯,也培养了学生勇于探索、不断创新的思维品质.

3.4等比数列篇12

教学目的:1.掌握等比数列的前n项和公式及公式证明思路.2.会用等比数列的前n项和公式解决有关等比数列的一些简单问题。教学重点:等比数列的前n项和公式推导教学难点:灵活应用公式解决有关问题教学过程:一、复习等比数列的通项公式,有关性质,及等比中项等概念。二、引进课题,采用印度国际象棋发明者的故事,即求①用错项相消法推导结果,两边同乘以公比:②②-①:这是一个庞大的数字>1.84×,以小麦千粒重为40计算,则麦粒总质量达7000亿吨——国王是拿不出来的。三、一般公式推导:设①乘以公比,②①-②:,时:时:公式的推导方法二:有等比数列的定义,根据等比的性质,有即围绕基本概念,从等比数列的定义出发,运用等比定理,导出了公式.公式的推导方法三:===注意:和各已知三个可求第四个,注意求和公式中是,通项公式中是不要混淆,应用求和公式时,必要时应讨论的情况。四、例1、求等比数列的前8项和.——直接应用公式。例2、某商场第1年销售计算机5000台,如果平均每年的销售量比上一年增加10%,那么从第1年起,约几年内可使总销售量达到30000台——应用题,且是公式逆用,要用对数算。例3、求和:——简单的“分项法”。例4、设数列为求此数列前项的和。——用错项相消法,注意分两种情况讨论例5、已知{}为等比数列,且=a,=b,,求.——注意这是一道多级分类讨论题.一级分类:分两种情况讨论;时,要分四、练习:是等比数列,是其前n项和,数列是否仍成等比数列?提示:应注意等比数列中的公比q的各种取值情况的讨论,还易忽视等比数列的各项应全不为0的前提条件.五、小结1.等比数列求和公式:当q=1时,当时,或;2.是等比数列的前n项和,①当q=-1且k为偶数时,不是等比数列.②当q≠-1或k为奇数时,仍成等比数列。3.这节课我们从已有的知识出发,用多种方法推导出了等比数列的前n项和公式,并在应用中加深了对公式的认识.

六、作业:p129.习题3.51,2,3,4,5,6,7.

3.4等比数列篇13

师:上节课我们对等差数列进行了复习,在数列中另一类重要的数列是什么?

生:等比数列.

师:我们这节课复习等比数列.(点课题并板书)通过课前预习,请同学们思考下列几个问题:

1.等比数列的定义.

2.等比数列通项公式、前n项和公式.

3.等比中项的概念.

4.等比数列最基本性质.

学生A:回答问题1,如果一个数列从第二项起每一项与它前一项的商是同一个常数,那么这个数列就叫做等比数列,这个常数叫做这个等比数列的公比,记为q.

师:在这个定义中需要强调的有哪些?

学生A:

1.数列从第二项起.

2.“商”字,即数列中每一项都不为0.

3.同一个常数.

师:常数列是等比数列,这句话对吗?

学生A:不对,非零常数列是等比数列,也是等差数列;零常数列是等差数列但不是等比数列.

学生B:回答问题2,等比数列通项公式为:.

推广为:.其中m,n∈N*.

等比数列前n项和公式为:

师:在应用等比数列前n项和公式时一定要注意公比得1与不得1两种情况.

学生C:回答问题3,若a,b,c成等比数列,则b为a,c的等比中项,且.

师:两个数的等比中项有两个,这与两个数的等差中项不同.

学生D:回答问题4,等比数列有如下性质:  

1.若m+n=p+q,m,n,p,q∈N*,则am·an=ap·aq.

2.若Sn≠0,则Sn,S2n-Sn,S3n-S2n成等比数列.

3.下标成等差数列的项构成等比数列.

师:以上几位同学回答得很好,下面我们做几道练习题.

教师在黑板上出几道小练习题,学生在课上迅速完成,然后口答.

1.在等比数列中,

A.      B.      C.或      D.-或-

2.一个等比数列的前n项和为48,前2n项和为60,则前3n项和为(  )

A.183       B.108       C.75       D.63

3.在各项均为正数的等比数列{an}中,若a5a6=9,则log3a1+log3a2+log3a3+…+log3a10=____.

4.若{an}为等比数列,且a1+a2+a3=7,a1a2a3=8,求an.

学生E:1题选C.在等比数列{an}中,a7a11=a4a14=6,又a4+a14=5,

是或,即选C.

学生F:2题选D.在等比数列中,由性质2,前n项和为48,次n项和为12,得末n项和为3,故前3n项和为63,即选D.

学生G:填10.因为log3a1+log3a2+log3a3+…+log3a10=log3(a1a2…a10),

又a1a10=a2a9=…=a5a6=9,

故log3(a1a2…a10)=log395=10.

学生H:由已知得解得或

所以an=2n-1或an=23-n

师:上面几名同学完成得很好,在解题中我们需注意等比数列性质的应用.下面我们解决较综合性问题,找三名同学板演.

1.设等比数列{an}的公比为q(q>0),它的前n项和为40,前2n项和为3280,且在前n项和中的数值最大的项为27,求数列的第2n项.

2.已知{an}的是首项为2,公式为的等比数列,Sn为它的前n项和.

(1)用Sn表示Sn+1;

(2)是否存在自然数c和k,使得成立?

3.设Sn为数列{an}的前n项和,且满足2Sn=3(an-1),

(1)证明数列{an}是等比数列,并求Sn;

(2)若bn=4n+5,将数列{an}和{bn}的公共项按它们在原数列中顺序排成一个新的数列{dn},证明{dn}是等比数列,并求其通项公式.

三个学生板演后,师生进行点评,剩余时间留给学生质疑答疑.

评析:

本节课是一节高三复习课,教学活动主要以回顾、归纳、训练的形式展开.采用了师生互动的开放式教学模式,以学生为主体、教师为主导的教学理念,主要体现在如下几个方面:

1.打破以往教师“一言堂”的教学模式,代之以学生课上活动,教师起穿针引线的作用.由学生自己动手归纳总结,解决问题.它的步骤是:布置预习内容(知识内容、题型)----课上提出问题----学生回答问题----补充归纳、强调注意事项----巩固练习----个别答疑.

2.体现了课堂教学从“灌输式”到“引导开放式”的转变,以教师提出问题、学生解决问题为途径,以相互补充展开教学,总结科学合理的知识体系,形成师生之间的良性互动,提高课上教学效果.

3.营造开放性课堂氛围,使学生在轻松、愉悦的环境下完成学习任务,提高了课堂教学效果.通过板演,强化解题的规范性、严谨性.

为适应现在高考要求,复习课应以提高学生自身素质为出发点,以搞好高三复习备考,提高备考效率为目标,这是摆在所有高三教师面前需要解决的问题,我们广大教师在今后的教学实践中要不断探讨.

3.4等比数列篇14

以上是第一范文网小编为大家整理的高中数学《等比数列的前n项和》说课稿,希望对大家有所帮助。

一、教材分析

1.从在教材中的地位与作用来看

《等比数列的前n项和》是数列这一章中的一个重要内容,它不仅在现实生活中有着广泛的实际应用,如储蓄、分期付款的有关计算等等,而且公式推导过程中所渗透的类比、化归、分类讨论、整体变换和方程等思想方法,都是学生今后学习和工作中必备的数学素养.

2.从学生认知角度看

从学生的思维特点看,很容易把本节内容与等差数列前n项和从公式的形成、特点等方面进行类比,这是积极因素,应因势利导.不利因素是:本节公式的推导与等差数列前n项和公式的推导有着本质的不同,这对学生的思维是一个突破,另外,对于q=1这一特殊情况,学生往往容易忽视,尤其是在后面使用的过程中容易出错.

3.学情分析

教学对象是刚进入高中的学生,虽然具有一定的分析问题和解决问题的能力,逻辑思维能力也初步形成,但由于年龄的原因,思维尽管活跃、敏捷,却缺乏冷静、深刻,因此片面、不严谨.

4.重点、难点

教学重点:公式的推导、公式的特点和公式的运用.

教学难点:公式的推导方法和公式的灵活运用.

公式推导所使用的“错位相减法”是高中数学数列求和方法中最常用的方法之一,它蕴含了重要的数学思想,所以既是重点也是难点.

二、目标分析

知识与技能目标:

理解并掌握等比数列前n项和公式的推导过程、公式的特点,在此基础

上能初步应用公式解决与之有关的问题.

过程与方法目标:

通过对公式推导方法的探索与发现,向学生渗透特殊到一般、类比与转

化、分类讨论等数学思想,培养学生观察、比较、抽象、概括等逻辑思维能力和逆向思维的能力.

情感与态度价值观:

通过对公式推导方法的探索与发现,优化学生的思维品质,渗透事物之

间等价转化和理论联系实际的辩证唯物主义观点.

三、过程分析

学生是认知的主体,设计教学过程必须遵循学生的认知规律,尽可能地让学生去经历知识的形成与发展过程,结合本节课的特点,我设计了如下的教学过程:

1.创设情境,提出问题

在古印度,有个名叫西萨的人,发明了国际象棋,当时的印度国王大为赞赏,对他说:我可以满足你的任何要求.西萨说:请给我棋盘的64个方格上,第一格放1粒小麦,第二格放2粒,第三格放4粒,往后每一格都是前一格的两倍,直至第64格.国王令宫廷数学家计算,结果出来后,国王大吃一惊.为什么呢?

设计意图:设计这个情境目的是在引入课题的同时激发学生的兴趣,调动学习的积极性.故事内容紧扣本节课的主题与重点.

此时我问:同学们,你们知道西萨要的是多少粒小麦吗?引导学生写出麦粒总数.带着这样的问题,学生会动手算了起来,他们想到用计算器依次算出各项的值,然后再求和.这时我对他们的这种思路给予肯定.

设计意图:在实际教学中,由于受课堂时间限制,教师舍不得花时间让学生去做所谓的“无用功”,急急忙忙地抛出“错位相减法”,这样做有悖学生的认知规律:求和就想到相加,这是合乎逻辑顺理成章的事,教师为什么不相加而马上相减呢?在整个教学关键处学生难以转过弯来,因而在教学中应舍得花时间营造知识形成过程的氛围,突破学生学习的障碍.同时,形成繁难的情境激起了学生的求知欲,迫使学生急于寻求解决问题的新方法,为后面的教学埋下伏笔.

2.师生互动,探究问题

在肯定他们的思路后,我接着问:1,2,22,…,263是什么数列?有何特征?应归结为什么数学问题呢?

探讨1:,记为(1)式,注意观察每一项的特征,有何联系?(学生会发现,后一项都是前一项的2倍)

探讨2:如果我们把每一项都乘以2,就变成了它的后一项,(1)式两边同乘以2则有,记为(2)式.比较(1)(2)两式,你有什么发现?

设计意图:留出时间让学生充分地比较,等比数列前n项和的公式推导关键是变“加”为“减”,在教师看来这是“天经地义”的,但在学生看来却是“不可思议”的,因此教学中应着力在这儿做文章,从而抓住培养学生的辩证思维能力的良好契机.

经过比较、研究,学生发现:(1)、(2)两式有许多相同的项,把两式相减,相同的项就消去了,得到:.老师指出:这就是错位相减法,并要求学生纵观全过程,反思:为什么(1)式两边要同乘以2呢?

设计意图:经过繁难的计算之苦后,突然发现上述解法,不禁惊呼:真是太简洁了!让学生在探索过程中,充分感受到成功的情感体验,从而增强学习数学的兴趣和学好数学的信心.

3.类比联想,解决问题

这时我再顺势引导学生将结论一般化,

这里,让学生自主完成,并喊一名学生上黑板,然后对个别学生进行指导.

设计意图:在教师的指导下,让学生从特殊到一般,从已知到未知,步步深入,让学生自己探究公式,从而体验到学习的愉快和成就感.

对不对?这里的q能不能等于1?等比数列中的公比能不能为

1q=1时是什么数列?此时sn=?(这里引导学生对q进行分类讨论,得出公式,同时为后面的例题教学打下基础.)

再次追问:结合等比数列的通项公式an=a1qn-1,如何把sn用a1、an、q表示出来?(引导学生得出公式的另一形式)

设计意图:通过反问精讲,一方面使学生加深对知识的认识,完善知识结构,另一方面使学生由简单地模仿和接受,变为对知识的主动认识,从而进一步提高分析、类比和综合的能力.这一环节非常重要,尽管时间有时比较少,甚至仅仅几句话,然而却有画龙点睛之妙用.

4.讨论交流,延伸拓展

3.4等比数列篇15

教学目标

1.掌握等比数列前项和公式,并能运用公式解决简单的问题.

理解公式的推导过程,体会转化的思想;

用方程的思想认识等比数列前项和公式,利用公式知三求一;与通项公式结合知三求二;

2.通过公式的灵活运用,进一步渗透方程的思想、分类讨论的思想、等价转化的思想.

3.通过公式推导的教学,对学生进行思维的严谨性的训练,培养他们实事求是的科学态度.

教学建议

教材分析

知识结构

先用错位相减法推出等比数列前项和公式,而后运用公式解决一些问题,并将通项公式与前项和公式结合解决问题,还要用错位相减法求一些数列的前项和.

重点、难点分析

教学重点、难点是等比数列前项和公式的推导与应用.公式的推导中蕴含了丰富的数学思想、方法,这些思想方法在其他数列求和问题中多有涉及,所以对等比数列前项和公式的要求,不单是要记住公式,更重要的是掌握推导公式的方法.等比数列前项和公式是分情况讨论的,在运用中要特别注意和两种情况.

教学建议

本节内容分为两课时,一节为等比数列前项和公式的推导与应用,一节为通项公式与前项和公式的综合运用,另外应补充一节数列求和问题.

等比数列前项和公式的推导是重点内容,引导学生观察实例,发现规律,归纳总结,证明结论.

等比数列前项和公式的推导的其他方法可以给出,提高学生学习的兴趣.

编拟例题时要全面,不要忽略的情况.

通项公式与前项和公式的综合运用涉及五个量,已知其中三个量可求另两个量,但解指数方程难度大.

补充可以化为等差数列、等比数列的数列求和问题.

教学设计示例

课题:等比数列前项和的公式

教学目标

通过教学使学生掌握等比数列前项和公式的推导过程,并能初步运用这一方法求一些数列的前项和.

通过公式的推导过程,培养学生猜想、分析、综合能力,提高学生的数学素质.

通过教学进一步渗透从特殊到一般,再从一般到特殊的辩证观点,培养学生严谨的学习态度.

教学重点,难点

教学重点是公式的推导及运用,难点是公式推导的思路.

教学用具

幻灯片,课件,电脑.

教学方法

引导发现法.

教学过程

一、新课引入:

提出问题:

二、新课讲解:

记,式中有64项,后项与前项的比为公比2,当每一项都乘以2后,中间有62项是对应相等的,作差可以相互抵消.

即,①

,②

②-①得即.

由此对于一般的等比数列,其前项和,如何化简?

等比数列前项和公式

仿照公比为2的等比数列求和方法,等式两边应同乘以等比数列的公比,即

③两端同乘以,得

④,

③-④得⑤,

当时,由③可得

当时,由⑤得.

于是

反思推导求和公式的方法——错位相减法,可以求形如的数列的和,其中为等差数列,为等比数列.

例题:求和:.

设,其中为等差数列,为等比数列,公比为,利用错位相减法求和.

解:,

两端同乘以,得

两式相减得

于是.

说明:错位相减法实际上是把一个数列求和问题转化为等比数列求和的问题.

公式其它应用问题注意对公比的分类讨论即可.

三、小结:

1.等比数列前项和公式推导中蕴含的思想方法以及公式的应用;

2.用错位相减法求一些数列的前项和.

四、作业:略.

五、板书设计

等比数列前项和公式例题

3.4等比数列篇16

【教学目标】

1.理解等比数列的概念,掌握等比数列的通项公式;掌握等比中项的概念.2.逐步灵活应用等比数列的概念和通项公式解决问题.

3.通过教学,培养学生的观察、分析、归纳、推理的能力,培养学生类比分析的能力.

【教学重点】

等比数列的概念及通项公式.

【教学难点】

灵活应用等比数列概念及通项公式解决相关问题.

【教学方法】

本节课主要采用类比教学法和自主探究教学法.充分利用现实情景,尽可能地增加教学过程的趣味性、实践性.在教师的启发指导下,强调学生的主动参与,让学生在等差数列的基础上用类比的方法自己去分析、探索,在探索过程中研究和领悟得出的结论,从而达到使学生既获得知识又发展智能的目的.

【教学过程】略

以上就是关于文章等比数列中项公式的全部内容,再次感谢您的阅读,祝您工作顺利。

标签云