范文小一网整理平行四边形的判定,旨在帮助更多人解决教学困扰,文章仅供参考,具体需要活学活用才是真正的有所帮助,下面随小编一起来看下相关文章平行四边形的判定吧。
平行四边形的判定
平行四边形的判定篇1一、素质教育目标
知识教学点
1.掌握平行四边形的判定定理1、2、3、4,并能与性质定理、定义综合应用.
2.使学生理解判定定理与性质定理的区别与联系.
3.会根据简单的条件画出平行四边形,并说明画图的依据是哪几个定理.
能力训练点
1.通过“探索式试明法”开拓学生思路,发展学生思维能力.
2.通过教学,使学生逐步学会分别从题设或结论出发寻求论证思路的分析方法,进一步提高学生分析问题,解决问题的能力.
德育渗透点
通过一题多解激发学生的学习兴趣.
美育渗透点
通过学习,体会几何证明的方法美.
二、学法引导
构造逆命题,分析探索证明,启发讲解.
三、重点·难点·疑点及解决办法
1.教学重点:平行四边形的判定定理1、2、3的应用.
2.教学难点:综合应用判定定理和性质定理.
3.疑点及解决办法:在综合应用判定定理及性质定理时,在什么条件下用判定定理,在什么条件下用性质定理.
四、课时安排
2课时
五、教具学具准备
投影仪,投影胶片,常用画图工具
六、师生互动活动设计
复习引入,构造逆命题,画图分析,讨论证法,巩固应用.
七、教学步骤
【复习提问】
1.平行四边形有什么性质?学生回答教师板书
2.将以上性质定理分别用命题的形式叙述出来.
【引入新课】
用投影仪打出上述命题的逆命题.
上述第一个逆命题显然是正确的,因为它就是平行四边形的定义,所以它也是我们判定一个四边形是否为平行四边形的基本方法.
那么其它逆命题是否正确呢?如果正确就可得到另外的判定方法.
【讲解新课】
1.平行四边形的判定
我们知道,平行四边形的对角相等,反过来对角相等的四边形是平行四边形吗?
如图1,在四边形中,如果,,那么.
∴.
同理.
∴四边形是平行四边形,因此得到:
平行四边形判定定理1:两组对角分别相等的四边形是平行四边形.
类似地,我们还会想到,两组对边相等的四边形是平行四边形吗?
如图1,如果,,连结,则△≌△得到,,那么,,则四边形是平行四边形.
由此得到:
平行四边形判定定理2:两组对边分别相等的四边形是平行四边形.
.
我们再来证明下面定理
平行四边形判定定理3:对角线互相平分的四边形是平行四边形.
2.判定定理与性质定理的区别与联系
判定定理1、2、3分别是相应性质定理的逆定理,彼此之间分别为互逆定理,在使用时不得混淆.
例1已知:是对角线上两点,并且,如右图.
求证:四边形是平行四边形.
分析:因为四边形是平行四边形,所以对边平行且相等,由已知易证出两组三角形全等,用定义或判定定理1、2都可以,还可以连结交于利用判定定理3简单.
证明:.
【总结、扩展】
1.小结:
本堂课所讲的判定定理有
在今后解决平行四边形问题时要尽可能地运用平行四边形的相应定理,不要总是依赖于全等三角形,否则不利于掌握新的知识.
2.思考题
教材P144B.3
八、布置作业
教材P142中7;P143中8、9、10
九、板书设计
十、随堂练习
教材P138中1、2
补充
1.下列给出了四边形中、、的度数之比,其中能判定四边形是平行四边形的是
A.1:2:3:4B.2:2:3:3
C.2:3:2:3D.2:3:3:2
2.在下面给出的条件中,能判定四边形是平行四边形的是
A.,B.,
C.,D.,
3.已知:在中,点、在对角线上,且.
求证:四边形是平行四边形.
平行四边形的判定篇2七、教学步骤
【引入新课】
由的定义和性质易得且,即“平行且相等”记为,反过来当时,四边形必为平行四边形,这就是今天要讲的判定定理4.
【讲解新课】
平行四边形的判定定理4:一组对边平行且相等的四边形是平行四边形.
引导学生结合图1,把已知,求证具体化.
分析:因为已知,所以只须证出,为此只需连对角线,通过全等三角形来实现.
证明:
师:我们已经全面的掌握了平行四边形的判定方法,共有几个方法?哪几个?由学生归纳后用投影仪打出.
平行四边形判定等知识的综合应用
教师指出:平行四边形的有关知识同学们都已掌握,但如何灵活、综合、有效地用来解决有关问题是非常重要的.因此,对典型例题的分析、论证、方法技巧的探讨运用都必须引起重视.
例2已知:,分别是、的中点,结合图1,求证:.
分析:证明两条线段相等,从它们在图形中的位置看,可证明两个三角形全等或证明四边形为平行四边形
证明:.
此例题综合运用了平行四边形的性质和判定,证题思路是:先运用平行四边形的性质得到判定另一个四边形是平行四边形的条件,再应用平行四边形的性质得出结论;题目虽不复杂,但层次有三,且利用基础知识较多,因此应使学生获得清晰的证题思路.
例3画,使,,
【总结、扩展】
1.小结
平行四边形知识的运用包括三个方面:一是直接运用平行四边形的性质来解决某些问题,例如求角的度数,线段长度,证明角相等或互补,证明线段相等或倍分等;二是判定一个四边形是平行四边形,从而判定直线平行等;三是先判定一个四边形是平行四边形,然后再用四边形的性质来解决有关问题.
2.思考题:
已知:如图1,在△中,,.
求证:
八、布置作业
教材P143中11、12,P144中13、14
九、板书设计
十、背景知识与课外阅读
美妙的莫雷定理
已知:如图1,和,和,和分别为△的、、的三等分线.
求证:∠△是正三角形.
这是英国数学家富兰克·莫雷在1899年提出的,不管从已知条件和结论看,都十分对称美妙,数学家柯克特称它是初等几何最惊人的定理之一.
十一、随堂练习
教材P140中1、2
补充:判断
一组对边平行,一组对边相等的四边形是平行四边形
一组对角平行,一组对角相等的四边形是平行四边形
一组对边相等,一组对角相等的四边形是平行四边形
一组对边平行且相等的四边形是平行四边形
平行四边形的判定篇3一、教学目标:1.在探索平行四边形的判别条件中,理解并掌握用边、对角线来判定平行四边形的方法.2.会综合运用平行四边形的判定方法和性质来解决问题.3.培养用类比、逆向联想及运动的思维方法来研究问题.二、重点、难点1.重点:平行四边形的判定方法及应用.2.难点:平行四边形的判定定理与性质定理的灵活应用.3.难点的突破方法:平行四边形的判别方法是本节课的核心内容.同时它又是后面进一步研究矩形、菱形、正方形判别的基础,更是发展学生合情推理及说理的良好素材.本节课的教学重点为平行四边形的判别方法.在本课中,可以探索活动为载体,并将论证作为探索活动的自然延续与必要发展,从而将直观操作与简单推理有机融合,达到突出重点、分散难点的目的.平行四边形的判定方法1、2都是平行四边形性质的逆命题,它们的证明都可利用定义或前一个方法来证明.平行四边形有四种判定方法,与性质类似,可从边、对角线两方面进行记忆.要注意:①本教材没有把用角来作为判定的方法,教学中可以根据学生的情况作为补充;②本节课只介绍前两个判定方法.教学中,我们可创设贴近学生生活、生动有趣的问题情境,开展有效的数学活动,如通过欣赏图片及识别图片中的平行四边形,使学生建立对平行四边形的直觉认识.并复习平行四边形的定义,建立新旧知识间的相互联系.接着提出问题:小明的父亲手中有一些木条,他想通过适当的测量、割剪,钉制一个平行四边形框架,你能帮他想出一些办法来吗?从而组织学生主动参与、勤于动手、积极思考,使他们在自主探究与合作交流的过程中,从整体上把握“平行四边形的判别”的方法.然后利用学生手中的学具——硬纸板条通过观察、测量、猜想、验证、探索构成平行四边形的条件.在学生拼图的活动中,教师可以以问题串的形式展开对平行四边形判别方法的探讨,让学生在问题解决中,实现对平行四边形各种判别方法的掌握,并发展了学生说理及简单推理的能力.从本节开始,就应让学生直接运用平行四边形的性质和判定去解决问题,凡是可以用平行四边形知识证明的问题,不要再回到用三角形全等证明.应该对学生提出这个要求.平行四边形知识的运用包括三个方面:一是直接运用平行四边形的性质去解决某些问题.例如求角的度数,线段的长度,证明角相等或线段相等等;二是判定一个四边形是平行四边形,从而判定直线平行等;三是先判定一个四边形是平行四边形,然后再眼再用平行四边形的性质去解决某些问题.平行四边形的概念、性质、判定都是非常重要的基础知识,这些知识是本章的重点内容,要使学生熟练地掌握这些知识.三、例题的意图分析本节课安排了3个例题,例1是教材p96的例3,它是平行四边形的性质与判定的综合运用,此题最好先让学生说出证明的思路,然后老师总结并指出其最佳方法.例2与例3都是补充的题目,其目的就是让学生能灵活和综合地运用平行四边形的判定方法和性质来解决问题.例3是一道拼图题,教学时,可以让学生动起来,边拼图边说明道理,即可以提高学生的动手能力和学生的思维能力,又可以提高学生的学习兴趣.如让学生再用四个不等边三角形拼一个如图的大三角形,让学生指出图中所有的平行四边形,并说明理由.四、课堂引入1.欣赏图片、提出问题.展示图片,提出问题,在刚才演示的图片中,有哪些是平行四边形?你是怎样判断的?2.【探究】:小明的父亲手中有一些木条,他想通过适当的测量、割剪,钉制一个平行四边形框架,你能帮他想出一些办法来吗?让学生利用手中的学具——硬纸板条通过观察、测量、猜想、验证、探索构成平行四边形的条件,思考并探讨:你能适当选择手中的硬纸板条搭建一个平行四边形吗?你怎样验证你搭建的四边形一定是平行四边形?你能说出你的做法及其道理吗?能否将你的探索结论作为平行四边形的一种判别方法?你能用文字语言表述出来吗?你还能找出其他方法吗?从探究中得到:平行四边形判定方法1两组对边分别相等的四边形是平行四边形。
平行四边形判定方法2对角线互相平分的四边形是平行四边形。
五、例习题分析例1已知:如图abcd的对角线ac、bd交于点o,e、f是ac上的两点,并且ae=cf.求证:四边形bfde是平行四边形.分析:欲证四边形bfde是平行四边形可以根据判定方法2来证明.问;你还有其它的证明方法吗?比较一下,哪种证明方法简单.例2已知:如图,a′b′∥ba,b′c′∥cb,c′a′∥ac.求证:(1)∠abc=∠b′,∠cab=∠a′,∠bca=∠c′;(2)△abc的顶点分别是△b′c′a′各边的中点.证明:(1)∵a′b′∥ba,c′b′∥bc,∴四边形abcb′是平行四边形.∴ ∠abc=∠b′(平行四边形的对角相等).同理∠cab=∠a′,∠bca=∠c′.(2)由(1)证得四边形abcb′是平行四边形.同理,四边形aba′c是平行四边形.∴ab=b′c,ab=a′c(平行四边形的对边相等).∴b′c=a′c.同理 b′a=c′a,a′b=c′b.∴ △abc的顶点a、b、c分别是△b′c′a′的边b′c′、c′a′、a′b′的中点.例3小明用手中六个全等的正三角形做拼图游戏时,拼成一个六边形.你能在图中找出所有的平行四边形吗?并说说你的理由.解:有6个平行四边形,分别是abof,abco,bcdo,cdeo,defo,efao.理由是:因为正△abo≌正△aof,所以ab=bo,of=fa.根据“两组对边分别相等的四边形是平行四边形”,可知四边形abcd是平行四边形.其它五个同理.
六、随堂练习
1.如图,在四边形abcd中,ac、bd相交于点o,
若ad=8cm,ab=4cm,那么当bc=____cm,cd=____cm时,四边形abcd为平行四边形;
若ac=10cm,bd=8cm,那么当ao=___cm,do=___cm时,四边形abcd为平行四边形.
2.已知:如图,abcd中,点e、f分别在cd、ab上,df∥be,ef交bd于点o.求证:eo=of.
3.灵活运用课本p89例题,如图:由火柴棒拼出的一列图形,第n个图形由个等边三角形拼成,通过观察,分析发现:
①第4个图形中平行四边形的个数为_____.
②第8个图形中平行四边形的个数为_____.
七、课后练习1.下列条件中能判断四边形是平行四边形的是.对角线互相垂直对角线相等对角线互相垂直且相等对角线互相平分2.已知:如图,△abc,bd平分∠abc,de∥bc,ef∥bc,求证:be=cf
19.1.2平行四边形的判定一、教学目标:1.掌握用一组对边平行且相等来判定平行四边形的方法.2.会综合运用平行四边形的四种判定方法和性质来证明问题.3.通过平行四边形的性质与判定的应用,启迪学生的思维,提高分析问题的能力.二、重点、难点1.重点:平行四边形各种判定方法及其应用,尤其是根据不同条件能正确地选择判定方法.2.难点:平行四边形的判定定理与性质定理的综合应用.3.难点的突破方法:本节课是平行四边形判定的第二节课,上一节课已经学习了判定方法1和判定方法2,再结合平行四边形的定义,同学们已经掌握了3种平行四边形的判定方法.本节课在上节课的基础上,学习平行四边形的判定方法3,使同学们会应用这些方法进行几何的推理证明,并且通过本节课的学习,继续培养学生的分析问题、寻找最佳解题途径的能力.本节课的知识点不难,但学生灵活运用判定定理去解决相关问题并不容易,在以后的教学中还应加强一题多解和寻找最佳解题方法的训练.平行四边形的判定方法3不是性质的逆命题.它可以用平行四边形定义或平行四边形判定方法1或2来证明,可以看作是巩固前面两个判定方法的一个很好的练习题.教学中可引导学生用不同的方法进行证明,以活跃学生的思维.注意强调:判定方法3是“一组对边平行且相等的四边形是平行四边形”,而“一组对边平行另一组对边相等的四边形不一定是平行四边形”.例如:如图,ad∥bc,ab=dc,但四边形abcd不是平行四边形.</pgn0094b.txt/pgn>学过本节后,应使学生掌握平行四边形的四个(或五个)判定方法,这些判定的方法是:从边看:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③一组对边平行且相等的四边形是平行四边形.从对角线看:对角线互相平分的四边形是平行四边形.让学生了解平行四边形知识的运用包括三个方面:一是直接运用平行四边形的性质去解决某些问题.例如求角的度数,线段的长度,证明角相等或线段相等等;二是判定一个四边形是平行四边形,从而判定直线平行等;三是先判定一个四边形是平行四边形,然后再用平行四边形的性质去解决某些问题.平行四边形的概念、性质、判定都是非常重要的基础知识,这些知识是本章的重点内容,要使学生熟练地掌握这些知识.三、例题的意图分析本节课的两个例题都是补充的题目,目的是让学生能掌握平行四边形的第三种判定方法和会综合运用平行四边形的判定方法和性质来解决问题.学生程度好一些的学校,可以适当地自己再补充一些题目,使同学们会应用这些方法进行几何的推理证明,通过学习,培养学生分析问题、寻找最佳解题途径的能力.四、课堂引入1.平行四边形的性质;2.平行四边形的判定方法;3.【探究】取两根等长的木条ab、cd,将它们平行放置,再用两根木条bc、ad加固,得到的四边形abcd是平行四边形吗?结论:一组对边平行且相等的四边形是平行四边形.
五、例习题分析例1已知:如图,abcd中,e、f分别是ad、bc的中点,求证:be=df.分析:证明be=df,可以证明两个三角形全等,也可以证明四边形bedf是平行四边形,比较方法,可以看出第二种方法简单.证明:∵四边形abcd是平行四边形,∴ad∥cb,ad=cd.∵e、f分别是ad、bc的中点,∴de∥bf,且de=ad,bf=bc.∴de=bf.∴四边形bedf是平行四边形.∴be=df.此题综合运用了平行四边形的性质和判定,先运用平行四边形的性质得到判定另一个四边形是平行四边形的条件,再应用平行四边形的性质得出结论;题目虽不复杂,但层次有三,且利用知识较多,因此应使学生获得清晰的证明思路.例2已知:如图,abcd中,e、f分别是ac上两点,且be⊥ac于e,df⊥ac于f.求证:四边形bedf是平行四边形.分析:因为be⊥ac于e,df⊥ac于f,所以be∥df.需再证明be=df,这需要证明△abe与△cdf全等,由角角边即可.证明:∵四边形abcd是平行四边形,∴ab=cd,且ab∥cd.∴∠bae=∠dcf.∵be⊥ac于e,df⊥ac于f,∴be∥df,且∠bea=∠dfc=90°.∴△abe≌△cdf.∴be=df.∴四边形bedf是平行四边形.六、课堂练习1.在下列给出的条件中,能判定四边形abcd为平行四边形的是.ab∥cd,ad=bc∠a=∠b,∠c=∠dab=cd,ad=bcab=ad,cb=cd2.已知:如图,ac∥ed,点b在ac上,且ab=ed=bc,找出图中的平行四边形,并说明理由.3.已知:如图,在abcd中,ae、cf分别是∠dab、∠bcd的平分线.求证:四边形afce是平行四边形.七、课后练习1.判断题:(1)相邻的两个角都互补的四边形是平行四边形;( )(2)两组对角分别相等的四边形是平行四边形;( )(3)一组对边平行,另一组对边相等的四边形是平行四边形;( )(4)一组对边平行且相等的四边形是平行四边形;( )(5)对角线相等的四边形是平行四边形;( )(6)对角线互相平分的四边形是平行四边形.( )2.延长△abc的中线ad至e,使de=ad.求证:四边形abec是平行四边形.3.在四边形abcd中,(1)ab∥cd;(2)ad∥bc;(3)ad=bc;(4)ao=oc;(5)do=bo;(6)ab=cd.选择两个条件,能判定四边形abcd是平行四边形的共有________对.
19.1.2平行四边形的判定——三角形的中位线一、教学目标:1.理解三角形中位线的概念,掌握它的性质.2.能较熟练地应用三角形中位线性质进行有关的证明和计算.3.经历探索、猜想、证明的过程,进一步发展推理论证的能力.4.能运用综合法证明有关三角形中位线性质的结论.理解在证明过程中所运用的归纳、类比、转化等思想方法.二、重点、难点1.重点:掌握和运用三角形中位线的性质.2.难点:三角形中位线性质的证明.3.难点的突破方法:本教材三角形中位线的内容是由一道例题从而引出其概念和性质的,新教材与老教材在这个知识的讲解顺序安排上是不同的,它这种安排是要降低难度,但由于学生在前面的学习中,添加辅助线的练习很少,因此无论讲解顺序怎么安排,证明三角形中位线的性质时,题中辅助线的添加都是一大难点,因此教师一定要重点分析辅助线的作法的思考过程.让学生理解:所证明的结论既有平行关系,又有数量关系,联想已学过的知识,可添加辅助线构造平行四边形,利用平行四边形的对边平行且相等来证明结论成立的思路与方法.强调三角形的中位线与中线的区别:中位线:中点与中点的连线;中线:顶点与对边中点的连线.要把三角形中位线性质的特点、条件、结论及作用交代清楚:特点:在同一个题设下,有两个结论.一个结论表明位置关系,另一个结论表明数量关系;条件:连接两边中点得到中位线;结论:有两个,一个表明中位线与第三边的位置关系,另一个表明中位线与第三边的数量关系;作用:在已知两边中点的条件下,证明线段的平行关系及线段的倍分关系.可通过题组练习,让学生掌握其性质.三、例题的意图分析例1是教材p98的例4,这是三角形中位线性质的证明题,教材采用的是先证明后引出概念与性质的方法,它一是要练习巩固平行四边形的性质与判定,二是为了降低难度,因此教师们在教学中要把握好度.建议讲完例1,引出三角形中位线的概念和性质后,马上做一组练习,以巩固三角形中位线的性质,然后再讲例2.例2是一道补充题,选自老教材的一个例题,它是三角形中位线性质与平行四边形的判定的混合应用题,题型挺好,添加辅助线的方法也很巧,结论以后也会经常用到,可根据学生情况适当的选讲例2.教学中,要把辅助线的添加方法讲清楚,可以借助与多媒体或教具.四、课堂引入1.平行四边形的性质;平行四边形的判定;它们之间有什么联系?2.你能说说平行四边形性质与判定的用途吗?3.创设情境实验:请同学们思考:将任意一个三角形分成四个全等的三角形,你是如何切割的?图中有几个平行四边形?你是如何判断的?
五、例习题分析
例1如图,点d、e、分别为△abc边ab、ac的中点,求证:de∥bc且de=bc.分析:所证明的结论既有平行关系,又有数量关系,联想已学过的知识,可以把要证明的内容转化到一个平行四边形中,利用平行四边形的对边平行且相等的性质来证明结论成立,从而使问题得到解决,这就需要添加适当的辅助线来构造平行四边形.方法1:如图,延长de到f,使ef=de,连接cf,由△ade≌△cfe,可得ad∥fc,且ad=fc,因此有bd∥fc,bd=fc,所以四边形bcfd是平行四边形.所以df∥bc,df=bc,因为de=df,所以de∥bc且de=bc.
方法2:如图,延长de到f,使ef=de,连接cf、cd和af,又ae=ec,所以四边形adcf是平行四边形.所以ad∥fc,且ad=fc.因为ad=bd,所以bd∥fc,且bd=fc.所以四边形adcf是平行四边形.所以df∥bc,且df=bc,因为de=df,所以de∥bc且de=bc.定义:连接三角形两边中点的线段叫做三角形的中位线.【思考】:想一想:①一个三角形的中位线共有几条?②三角形的中位线与中线有什么区别?三角形的中位线与第三边有怎样的关系?一个三角形的中位线共有三条;三角形的中位线与中线的区别主要是线段的端点不同.中位线是中点与中点的连线;中线是顶点与对边中点的连线.三角形的中位线与第三边的关系:三角形的中位线平行与第三边,且等于第三边的一半.)三角形中位线的性质:三角形的中位线平行与第三边,且等于第三边的一半.〖拓展〗利用这一定理,你能证明出在设情境中分割出来的四个小三角形全等吗?例2已知:如图,在四边形abcd中,e、f、g、h分别是ab、bc、cd、da的中点.求证:四边形efgh是平行四边形.分析:因为已知点e、f、g、h分别是线段的中点,可以设法应用三角形中位线性质找到四边形efgh的边之间的关系.由于四边形的对角线可以把四边形分成两个三角形,所以添加辅助线,连接ac或bd,构造“三角形中位线”的基本图形后,此题便可得证.证明:连结ac),△dag中,∵ah=hd,cg=gd,∴hg∥ac,hg=ac.同理ef∥ac,ef=ac.∴hg∥ef,且hg=ef.∴四边形efgh是平行四边形.此题可得结论:顺次连结四边形四条边的中点,所得的四边形是平行四边形.六、课堂练习1.如图,a、b两点被池塘隔开,在ab外选一点c,连结ac和bc,并分别找出ac和bc的中点m、n,如果测得mn=20m,那么a、b两点的距离是m,理由是.2.已知:三角形的各边分别为8cm、10cm和12cm,求连结各边中点所成三角形的周长.3.如图,△abc中,d、e、f分别是ab、ac、bc的中点,若ef=5cm,则ab=cm;若bc=9cm,则de=cm;中线af与de中位线有什么特殊的关系?证明你的猜想.七、课后练习1.一个三角形的周长是135cm,过三角形各顶点作对边的平行线,则这三条平行线所组成的三角形的周长是cm.2.已知:△abc中,点d、e、f分别是△abc三边的中点,如果△def的周长是12cm,那么△abc的周长是cm.3.已知:如图,e、f、g、h分别是ab、bc、cd、da的中点.求证:四边形efgh是平行四边形.
平行四边形的判定篇4教学建议
1.重点定理
重点分析方法涉及平行四边形元素的各方面,同时它又与平行四边形的性质联系,判定一个四边形是否为平行四边形是利用平行四边形性质解决其他问题的基础,所以定理是本节的重点.
2.难点灵活运用判定定理证明平行四边形
难点分析方法较多,综合性较强,能灵活的运用判定定理证明平行四边形,是本节的难点.
3.关于平行四边形判定的教法建议
本节研究方法,重点是四个判定定理,这也是本章的重点之一.
1.教科书首先指出,用定义可以判定平行四边形.然后从平行四边形的性质定理的逆命题出发,来探索定理.因此在开始的教学引入中,要充分调动学生的情感因素,尽可能利用形式多样的多媒体课件,激发学生兴趣,使学生能很快参与进来.
2.素质教育的主旨是发挥学生的主体因素,让学生自主获取知识.本章重点中前三个判定定理的顺序与它的性质定理相对应,因此在讲授新课时,建议采用实验式教学模式或探索式教学模式:在证明每个判定定理时,由学生自己去判断命题成立与否,并根据过去所学知识去验证自己的结论,比较各种方法的优劣,这样使每个学生都积极参与到教学中,自己去实验,去探索,去思考,去发现,在动手动脑中得到的结论会更深刻――同时也要注意保护学生的参与积极性.
3.方法较多,综合性较强,能灵活的运用判定定理证明平行四边形,是本节的难点.因此在例题讲解时,建议采用启发式教学模式,根据题目中具体条件结合图形引导学生根据分析法解题程序从条件或结论出发,由学生自己去思考,去分析,充分发挥学生的主体作用,对学生灵活掌握熟练应用各种判定定理会有帮助.
教学设计示例1
[教学目标]通过本节课教学,使学生训练掌握平行四边形的各条判定定理,并能灵活地运用平行四边形的性质定理和判定定理及以前学过的知识进行有关证明,培养学生的逻辑思维能力。
[教学过程]
一、准备题系列
1.复习旧知识:前面我们学习了平行四边形的性质,哪位同学能叙述一下。
2.小实验:有一块平行四喧形的玻璃片,假如不小心碰碎了解部分,同学们想想看,有没有办法把原来的平行四边形重新画出来?
学生可能想到的画法有:⑴分别过a、c作dc、da的平行线,两平行线相交于b;⑵过c作da的平行线,再在这平行线上截取cb=da,连结ba;⑶分别以a、c为圆心,以dc、da的长为半径画弧,两弧相交于b,连结ab、cb。
还有一种一法,学生不易想到,即由平行四边形对角线的特性,引导学生得出连结ac,取ac的中点o,再连结do,并延长do至b,使bo=do,连结ab、cd。
二、引入新课
上面作出的四边形是否都是平行四边形呢?请同学们猜一猜。生答后师指出这就是今天所要不得研究的问题。
三、尝试议练
1.要判定我们刚才画出的四边形是不是平行四边形,应当加以证明。第一种画法,由平行四边形的定义可知,它是平行四边形。
2.现在我们来看看第二种画法,这就是平行四边形判定定理一。请想想,一组对边平行且相等的四边形究竟是不是平行四边形呢?这里已知是什么?求证是什么?请写出。
自学课本上的证明过程,看后提问:这个证明题不作辅助线行不行?为什么?
3.再看第三种画法,在两组对边分别相等的情况下是不是平行四边形?教师写出已知、求证,请两位学生上台证明,其余在课堂练习本上做。
完成证明后提问哪些学生是用判定定理一落千丈证明的?哪些是用定义证明的?
四、变式练习
1.再看看第四种画法,可知,已各条件是四边形的对角线互相一平分,这种情况下它是不平行四边形?
阅读课本上的判定定理之后,要求学生思考用什么方法求证最简便?2.变式题
⑴两组对角分别相等的四边形是不是平行四边形?为什么?
⑵一组对边平行,一组对角相等的四边形是不是平行四边形?
⑶一组对边相等,一组对家相等及一组对边相等,另一组对边相等的四边形是不是平行四边形?
⑷自学课本例1思考:此例证明中,什么地方用了平行四边形的“性质”?什么地方用“判定”定理?
观察下图:
平行四边形abcd中,<a、<c的平行线分别交对边于e和f,求证:ae=fc
五、课堂小结
1.今天这节课我们学了什么?平行四这形的判定有哪些方法?试列举之。
2.这些方法中最基本的是哪一条?
3.定理和性质有什么关系?同一个证明题中应注意什么地方用判定,什么地方性质?
平行四边形的判定篇5教学建议
1.重点定理
重点分析方法涉及平行四边形元素的各方面,同时它又与平行四边形的性质联系,判定一个四边形是否为平行四边形是利用平行四边形性质解决其他问题的基础,所以定理是本节的重点.
2.难点灵活运用判定定理证明平行四边形
难点分析方法较多,综合性较强,能灵活的运用判定定理证明平行四边形,是本节的难点.
3.关于平行四边形判定的教法建议
本节研究方法,重点是四个判定定理,这也是本章的重点之一.
1.教科书首先指出,用定义可以判定平行四边形.然后从平行四边形的性质定理的逆命题出发,来探索定理.因此在开始的教学引入中,要充分调动学生的情感因素,尽可能利用形式多样的多媒体课件,激发学生兴趣,使学生能很快参与进来.
2.素质教育的主旨是发挥学生的主体因素,让学生自主获取知识.本章重点中前三个判定定理的顺序与它的性质定理相对应,因此在讲授新课时,建议采用实验式教学模式或探索式教学模式:在证明每个判定定理时,由学生自己去判断命题成立与否,并根据过去所学知识去验证自己的结论,比较各种方法的优劣,这样使每个学生都积极参与到教学中,自己去实验,去探索,去思考,去发现,在动手动脑中得到的结论会更深刻――同时也要注意保护学生的参与积极性.
3.方法较多,综合性较强,能灵活的运用判定定理证明平行四边形,是本节的难点.因此在例题讲解时,建议采用启发式教学模式,根据题目中具体条件结合图形引导学生根据分析法解题程序从条件或结论出发,由学生自己去思考,去分析,充分发挥学生的主体作用,对学生灵活掌握熟练应用各种判定定理会有帮助.
教学设计示例1
[教学目标]通过本节课教学,使学生训练掌握平行四边形的各条判定定理,并能灵活地运用平行四边形的性质定理和判定定理及以前学过的知识进行有关证明,培养学生的逻辑思维能力。
[教学过程]
一、准备题系列
1.复习旧知识:前面我们学习了平行四边形的性质,哪位同学能叙述一下。
2.小实验:有一块平行四喧形的玻璃片,假如不小心碰碎了解部分,同学们想想看,有没有办法把原来的平行四边形重新画出来?
学生可能想到的画法有:⑴分别过a、c作dc、da的平行线,两平行线相交于b;⑵过c作da的平行线,再在这平行线上截取cb=da,连结ba;⑶分别以a、c为圆心,以dc、da的长为半径画弧,两弧相交于b,连结ab、cb。
还有一种一法,学生不易想到,即由平行四边形对角线的特性,引导学生得出连结ac,取ac的中点o,再连结do,并延长do至b,使bo=do,连结ab、cd。
二、引入新课
上面作出的四边形是否都是平行四边形呢?请同学们猜一猜。生答后师指出这就是今天所要不得研究的问题。
三、尝试议练
1.要判定我们刚才画出的四边形是不是平行四边形,应当加以证明。第一种画法,由平行四边形的定义可知,它是平行四边形。
2.现在我们来看看第二种画法,这就是平行四边形判定定理一。请想想,一组对边平行且相等的四边形究竟是不是平行四边形呢?这里已知是什么?求证是什么?请写出。
自学课本上的证明过程,看后提问:这个证明题不作辅助线行不行?为什么?
3.再看第三种画法,在两组对边分别相等的情况下是不是平行四边形?教师写出已知、求证,请两位学生上台证明,其余在课堂练习本上做。
完成证明后提问哪些学生是用判定定理一落千丈证明的?哪些是用定义证明的?
四、变式练习
1.再看看第四种画法,可知,已各条件是四边形的对角线互相一平分,这种情况下它是不平行四边形?
阅读课本上的判定定理之后,要求学生思考用什么方法求证最简便?2.变式题
⑴两组对角分别相等的四边形是不是平行四边形?为什么?
⑵一组对边平行,一组对角相等的四边形是不是平行四边形?
⑶一组对边相等,一组对家相等及一组对边相等,另一组对边相等的四边形是不是平行四边形?
⑷自学课本例1思考:此例证明中,什么地方用了平行四边形的“性质”?什么地方用“判定”定理?
观察下图:
平行四边形abcd中,<a、<c的平行线分别交对边于e和f,求证:ae=fc
五、课堂小结
1.今天这节课我们学了什么?平行四这形的判定有哪些方法?试列举之。
2.这些方法中最基本的是哪一条?
3.定理和性质有什么关系?同一个证明题中应注意什么地方用判定,什么地方性质?
平行四边形的判定篇6一、素质教育目标
知识教学点
1.掌握平行四边形的判定定理1、2、3、4,并能与性质定理、定义综合应用.
2.使学生理解判定定理与性质定理的区别与联系.
3.会根据简单的条件画出平行四边形,并说明画图的依据是哪几个定理.
能力训练点
1.通过“探索式试明法”开拓学生思路,发展学生思维能力.
2.通过教学,使学生逐步学会分别从题设或结论出发寻求论证思路的分析方法,进一步提高学生分析问题,解决问题的能力.
德育渗透点
通过一题多解激发学生的学习兴趣.
美育渗透点
通过学习,体会几何证明的方法美.
二、学法引导
构造逆命题,分析探索证明,启发讲解.
三、重点·难点·疑点及解决办法
1.教学重点:平行四边形的判定定理1、2、3的应用.
2.教学难点:综合应用判定定理和性质定理.
3.疑点及解决办法:在综合应用判定定理及性质定理时,在什么条件下用判定定理,在什么条件下用性质定理.
四、课时安排
2课时
五、教具学具准备
投影仪,投影胶片,常用画图工具
六、师生互动活动设计
复习引入,构造逆命题,画图分析,讨论证法,巩固应用.
七、教学步骤
【复习提问】
1.平行四边形有什么性质?学生回答教师板书
2.将以上性质定理分别用命题的形式叙述出来.
【引入新课】
用投影仪打出上述命题的逆命题.
上述第一个逆命题显然是正确的,因为它就是平行四边形的定义,所以它也是我们判定一个四边形是否为平行四边形的基本方法.
那么其它逆命题是否正确呢?如果正确就可得到另外的判定方法.
【讲解新课】
1.平行四边形的判定
我们知道,平行四边形的对角相等,反过来对角相等的四边形是平行四边形吗?
如图1,在四边形中,如果,,那么.
∴.
同理.
∴四边形是平行四边形,因此得到:
平行四边形判定定理1:两组对角分别相等的四边形是平行四边形.
类似地,我们还会想到,两组对边相等的四边形是平行四边形吗?
如图1,如果,,连结,则△≌△得到,,那么,,则四边形是平行四边形.
由此得到:
平行四边形判定定理2:两组对边分别相等的四边形是平行四边形.
.
我们再来证明下面定理
平行四边形判定定理3:对角线互相平分的四边形是平行四边形.
2.判定定理与性质定理的区别与联系
判定定理1、2、3分别是相应性质定理的逆定理,彼此之间分别为互逆定理,在使用时不得混淆.
例1已知:是对角线上两点,并且,如右图.
求证:四边形是平行四边形.
分析:因为四边形是平行四边形,所以对边平行且相等,由已知易证出两组三角形全等,用定义或判定定理1、2都可以,还可以连结交于利用判定定理3简单.
证明:.
【总结、扩展】
1.小结:
本堂课所讲的判定定理有
在今后解决平行四边形问题时要尽可能地运用平行四边形的相应定理,不要总是依赖于全等三角形,否则不利于掌握新的知识.
2.思考题
教材P144B.3
八、布置作业
教材P142中7;P143中8、9、10
九、板书设计
十、随堂练习
教材P138中1、2
补充
1.下列给出了四边形中、、的度数之比,其中能判定四边形是平行四边形的是
A.1:2:3:4B.2:2:3:3
C.2:3:2:3D.2:3:3:2
2.在下面给出的条件中,能判定四边形是平行四边形的是
A.,B.,
C.,D.,
3.已知:在中,点、在对角线上,且.
求证:四边形是平行四边形.
平行四边形的判定篇7七、教学步骤
【引入新课】
由的定义和性质易得且,即“平行且相等”记为,反过来当时,四边形必为平行四边形,这就是今天要讲的判定定理4.
【讲解新课】
平行四边形的判定定理4:一组对边平行且相等的四边形是平行四边形.
引导学生结合图1,把已知,求证具体化.
分析:因为已知,所以只须证出,为此只需连对角线,通过全等三角形来实现.
证明:
师:我们已经全面的掌握了平行四边形的判定方法,共有几个方法?哪几个?由学生归纳后用投影仪打出.
平行四边形判定等知识的综合应用
教师指出:平行四边形的有关知识同学们都已掌握,但如何灵活、综合、有效地用来解决有关问题是非常重要的.因此,对典型例题的分析、论证、方法技巧的探讨运用都必须引起重视.
例2已知:,分别是、的中点,结合图1,求证:.
分析:证明两条线段相等,从它们在图形中的位置看,可证明两个三角形全等或证明四边形为平行四边形
证明:.
此例题综合运用了平行四边形的性质和判定,证题思路是:先运用平行四边形的性质得到判定另一个四边形是平行四边形的条件,再应用平行四边形的性质得出结论;题目虽不复杂,但层次有三,且利用基础知识较多,因此应使学生获得清晰的证题思路.
例3画,使,,
【总结、扩展】
1.小结
平行四边形知识的运用包括三个方面:一是直接运用平行四边形的性质来解决某些问题,例如求角的度数,线段长度,证明角相等或互补,证明线段相等或倍分等;二是判定一个四边形是平行四边形,从而判定直线平行等;三是先判定一个四边形是平行四边形,然后再用四边形的性质来解决有关问题.
2.思考题:
已知:如图1,在△中,,.
求证:
八、布置作业
教材P143中11、12,P144中13、14
九、板书设计
十、背景知识与课外阅读
美妙的莫雷定理
已知:如图1,和,和,和分别为△的、、的三等分线.
求证:∠△是正三角形.
这是英国数学家富兰克·莫雷在1899年提出的,不管从已知条件和结论看,都十分对称美妙,数学家柯克特称它是初等几何最惊人的定理之一.
十一、随堂练习
教材P140中1、2
补充:判断
一组对边平行,一组对边相等的四边形是平行四边形
一组对角平行,一组对角相等的四边形是平行四边形
一组对边相等,一组对角相等的四边形是平行四边形
一组对边平行且相等的四边形是平行四边形
平行四边形的判定篇8七、教学步骤
【引入新课】
由的定义和性质易得且,即“平行且相等”记为,反过来当时,四边形必为平行四边形,这就是今天要讲的判定定理4.
【讲解新课】
平行四边形的判定定理4:一组对边平行且相等的四边形是平行四边形.
引导学生结合图1,把已知,求证具体化.
分析:因为已知,所以只须证出,为此只需连对角线,通过全等三角形来实现.
证明:
师:我们已经全面的掌握了平行四边形的判定方法,共有几个方法?哪几个?由学生归纳后用投影仪打出.
平行四边形判定等知识的综合应用
教师指出:平行四边形的有关知识同学们都已掌握,但如何灵活、综合、有效地用来解决有关问题是非常重要的.因此,对典型例题的分析、论证、方法技巧的探讨运用都必须引起重视.
例2已知:,分别是、的中点,结合图1,求证:.
分析:证明两条线段相等,从它们在图形中的位置看,可证明两个三角形全等或证明四边形为平行四边形
证明:.
此例题综合运用了平行四边形的性质和判定,证题思路是:先运用平行四边形的性质得到判定另一个四边形是平行四边形的条件,再应用平行四边形的性质得出结论;题目虽不复杂,但层次有三,且利用基础知识较多,因此应使学生获得清晰的证题思路.
例3画,使,,
【总结、扩展】
1.小结
平行四边形知识的运用包括三个方面:一是直接运用平行四边形的性质来解决某些问题,例如求角的度数,线段长度,证明角相等或互补,证明线段相等或倍分等;二是判定一个四边形是平行四边形,从而判定直线平行等;三是先判定一个四边形是平行四边形,然后再用四边形的性质来解决有关问题.
2.思考题:
已知:如图1,在△中,,.
求证:
八、布置作业
教材P143中11、12,P144中13、14
九、板书设计
十、背景知识与课外阅读
美妙的莫雷定理
已知:如图1,和,和,和分别为△的、、的三等分线.
求证:∠△是正三角形.
这是英国数学家富兰克·莫雷在1899年提出的,不管从已知条件和结论看,都十分对称美妙,数学家柯克特称它是初等几何最惊人的定理之一.
十一、随堂练习
教材P140中1、2
补充:判断
一组对边平行,一组对边相等的四边形是平行四边形
一组对角平行,一组对角相等的四边形是平行四边形
一组对边相等,一组对角相等的四边形是平行四边形
一组对边平行且相等的四边形是平行四边形
平行四边形的判定篇9教学建议
1.重点定理
重点分析方法涉及平行四边形元素的各方面,同时它又与平行四边形的性质联系,判定一个四边形是否为平行四边形是利用平行四边形性质解决其他问题的基础,所以定理是本节的重点.
2.难点灵活运用判定定理证明平行四边形
难点分析方法较多,综合性较强,能灵活的运用判定定理证明平行四边形,是本节的难点.
3.关于平行四边形判定的教法建议
本节研究方法,重点是四个判定定理,这也是本章的重点之一.
1.教科书首先指出,用定义可以判定平行四边形.然后从平行四边形的性质定理的逆命题出发,来探索定理.因此在开始的教学引入中,要充分调动学生的情感因素,尽可能利用形式多样的多媒体课件,激发学生兴趣,使学生能很快参与进来.
2.素质教育的主旨是发挥学生的主体因素,让学生自主获取知识.本章重点中前三个判定定理的顺序与它的性质定理相对应,因此在讲授新课时,建议采用实验式教学模式或探索式教学模式:在证明每个判定定理时,由学生自己去判断命题成立与否,并根据过去所学知识去验证自己的结论,比较各种方法的优劣,这样使每个学生都积极参与到教学中,自己去实验,去探索,去思考,去发现,在动手动脑中得到的结论会更深刻――同时也要注意保护学生的参与积极性.
3.方法较多,综合性较强,能灵活的运用判定定理证明平行四边形,是本节的难点.因此在例题讲解时,建议采用启发式教学模式,根据题目中具体条件结合图形引导学生根据分析法解题程序从条件或结论出发,由学生自己去思考,去分析,充分发挥学生的主体作用,对学生灵活掌握熟练应用各种判定定理会有帮助.
教学设计示例1
[教学目标]通过本节课教学,使学生训练掌握平行四边形的各条判定定理,并能灵活地运用平行四边形的性质定理和判定定理及以前学过的知识进行有关证明,培养学生的逻辑思维能力。
[教学过程]
一、准备题系列
1.复习旧知识:前面我们学习了平行四边形的性质,哪位同学能叙述一下。
2.小实验:有一块平行四喧形的玻璃片,假如不小心碰碎了解部分,同学们想想看,有没有办法把原来的平行四边形重新画出来?
学生可能想到的画法有:⑴分别过a、c作dc、da的平行线,两平行线相交于b;⑵过c作da的平行线,再在这平行线上截取cb=da,连结ba;⑶分别以a、c为圆心,以dc、da的长为半径画弧,两弧相交于b,连结ab、cb。
还有一种一法,学生不易想到,即由平行四边形对角线的特性,引导学生得出连结ac,取ac的中点o,再连结do,并延长do至b,使bo=do,连结ab、cd。
二、引入新课
上面作出的四边形是否都是平行四边形呢?请同学们猜一猜。生答后师指出这就是今天所要不得研究的问题。
三、尝试议练
1.要判定我们刚才画出的四边形是不是平行四边形,应当加以证明。第一种画法,由平行四边形的定义可知,它是平行四边形。
2.现在我们来看看第二种画法,这就是平行四边形判定定理一。请想想,一组对边平行且相等的四边形究竟是不是平行四边形呢?这里已知是什么?求证是什么?请写出。
自学课本上的证明过程,看后提问:这个证明题不作辅助线行不行?为什么?
3.再看第三种画法,在两组对边分别相等的情况下是不是平行四边形?教师写出已知、求证,请两位学生上台证明,其余在课堂练习本上做。
完成证明后提问哪些学生是用判定定理一落千丈证明的?哪些是用定义证明的?
四、变式练习
1.再看看第四种画法,可知,已各条件是四边形的对角线互相一平分,这种情况下它是不平行四边形?
阅读课本上的判定定理之后,要求学生思考用什么方法求证最简便?2.变式题
⑴两组对角分别相等的四边形是不是平行四边形?为什么?
⑵一组对边平行,一组对角相等的四边形是不是平行四边形?
⑶一组对边相等,一组对家相等及一组对边相等,另一组对边相等的四边形是不是平行四边形?
⑷自学课本例1思考:此例证明中,什么地方用了平行四边形的“性质”?什么地方用“判定”定理?
观察下图:
平行四边形abcd中,<a、<c的平行线分别交对边于e和f,求证:ae=fc
五、课堂小结
1.今天这节课我们学了什么?平行四这形的判定有哪些方法?试列举之。
2.这些方法中最基本的是哪一条?
3.定理和性质有什么关系?同一个证明题中应注意什么地方用判定,什么地方性质?
平行四边形的判定篇10教学建议
1.重点定理
重点分析方法涉及平行四边形元素的各方面,同时它又与平行四边形的性质联系,判定一个四边形是否为平行四边形是利用平行四边形性质解决其他问题的基础,所以定理是本节的重点.
2.难点灵活运用判定定理证明平行四边形
难点分析方法较多,综合性较强,能灵活的运用判定定理证明平行四边形,是本节的难点.
3.关于平行四边形判定的教法建议
本节研究方法,重点是四个判定定理,这也是本章的重点之一.
1.教科书首先指出,用定义可以判定平行四边形.然后从平行四边形的性质定理的逆命题出发,来探索定理.因此在开始的教学引入中,要充分调动学生的情感因素,尽可能利用形式多样的多媒体课件,激发学生兴趣,使学生能很快参与进来.
2.素质教育的主旨是发挥学生的主体因素,让学生自主获取知识.本章重点中前三个判定定理的顺序与它的性质定理相对应,因此在讲授新课时,建议采用实验式教学模式或探索式教学模式:在证明每个判定定理时,由学生自己去判断命题成立与否,并根据过去所学知识去验证自己的结论,比较各种方法的优劣,这样使每个学生都积极参与到教学中,自己去实验,去探索,去思考,去发现,在动手动脑中得到的结论会更深刻――同时也要注意保护学生的参与积极性.
3.方法较多,综合性较强,能灵活的运用判定定理证明平行四边形,是本节的难点.因此在例题讲解时,建议采用启发式教学模式,根据题目中具体条件结合图形引导学生根据分析法解题程序从条件或结论出发,由学生自己去思考,去分析,充分发挥学生的主体作用,对学生灵活掌握熟练应用各种判定定理会有帮助.
教学设计示例1
[教学目标]通过本节课教学,使学生训练掌握平行四边形的各条判定定理,并能灵活地运用平行四边形的性质定理和判定定理及以前学过的知识进行有关证明,培养学生的逻辑思维能力。
[教学过程]
一、准备题系列
1.复习旧知识:前面我们学习了平行四边形的性质,哪位同学能叙述一下。
2.小实验:有一块平行四喧形的玻璃片,假如不小心碰碎了解部分,同学们想想看,有没有办法把原来的平行四边形重新画出来?
学生可能想到的画法有:⑴分别过a、c作dc、da的平行线,两平行线相交于b;⑵过c作da的平行线,再在这平行线上截取cb=da,连结ba;⑶分别以a、c为圆心,以dc、da的长为半径画弧,两弧相交于b,连结ab、cb。
还有一种一法,学生不易想到,即由平行四边形对角线的特性,引导学生得出连结ac,取ac的中点o,再连结do,并延长do至b,使bo=do,连结ab、cd。
二、引入新课
上面作出的四边形是否都是平行四边形呢?请同学们猜一猜。生答后师指出这就是今天所要不得研究的问题。
三、尝试议练
1.要判定我们刚才画出的四边形是不是平行四边形,应当加以证明。第一种画法,由平行四边形的定义可知,它是平行四边形。
2.现在我们来看看第二种画法,这就是平行四边形判定定理一。请想想,一组对边平行且相等的四边形究竟是不是平行四边形呢?这里已知是什么?求证是什么?请写出。
自学课本上的证明过程,看后提问:这个证明题不作辅助线行不行?为什么?
3.再看第三种画法,在两组对边分别相等的情况下是不是平行四边形?教师写出已知、求证,请两位学生上台证明,其余在课堂练习本上做。
完成证明后提问哪些学生是用判定定理一落千丈证明的?哪些是用定义证明的?
四、变式练习
1.再看看第四种画法,可知,已各条件是四边形的对角线互相一平分,这种情况下它是不平行四边形?
阅读课本上的判定定理之后,要求学生思考用什么方法求证最简便?2.变式题
⑴两组对角分别相等的四边形是不是平行四边形?为什么?
⑵一组对边平行,一组对角相等的四边形是不是平行四边形?
⑶一组对边相等,一组对家相等及一组对边相等,另一组对边相等的四边形是不是平行四边形?
⑷自学课本例1思考:此例证明中,什么地方用了平行四边形的“性质”?什么地方用“判定”定理?
观察下图:
平行四边形abcd中,<a、<c的平行线分别交对边于e和f,求证:ae=fc
五、课堂小结
1.今天这节课我们学了什么?平行四这形的判定有哪些方法?试列举之。
2.这些方法中最基本的是哪一条?
3.定理和性质有什么关系?同一个证明题中应注意什么地方用判定,什么地方性质?
平行四边形的判定篇11七、教学步骤
【引入新课】
由的定义和性质易得且,即“平行且相等”记为,反过来当时,四边形必为平行四边形,这就是今天要讲的判定定理4.
【讲解新课】
平行四边形的判定定理4:一组对边平行且相等的四边形是平行四边形.
引导学生结合图1,把已知,求证具体化.
分析:因为已知,所以只须证出,为此只需连对角线,通过全等三角形来实现.
证明:
师:我们已经全面的掌握了平行四边形的判定方法,共有几个方法?哪几个?由学生归纳后用投影仪打出.
平行四边形判定等知识的综合应用
教师指出:平行四边形的有关知识同学们都已掌握,但如何灵活、综合、有效地用来解决有关问题是非常重要的.因此,对典型例题的分析、论证、方法技巧的探讨运用都必须引起重视.
例2已知:,分别是、的中点,结合图1,求证:.
分析:证明两条线段相等,从它们在图形中的位置看,可证明两个三角形全等或证明四边形为平行四边形
证明:.
此例题综合运用了平行四边形的性质和判定,证题思路是:先运用平行四边形的性质得到判定另一个四边形是平行四边形的条件,再应用平行四边形的性质得出结论;题目虽不复杂,但层次有三,且利用基础知识较多,因此应使学生获得清晰的证题思路.
例3画,使,,
【总结、扩展】
1.小结
平行四边形知识的运用包括三个方面:一是直接运用平行四边形的性质来解决某些问题,例如求角的度数,线段长度,证明角相等或互补,证明线段相等或倍分等;二是判定一个四边形是平行四边形,从而判定直线平行等;三是先判定一个四边形是平行四边形,然后再用四边形的性质来解决有关问题.
2.思考题:
已知:如图1,在△中,,.
求证:
八、布置作业
教材P143中11、12,P144中13、14
九、板书设计
十、背景知识与课外阅读
美妙的莫雷定理
已知:如图1,和,和,和分别为△的、、的三等分线.
求证:∠△是正三角形.
这是英国数学家富兰克·莫雷在1899年提出的,不管从已知条件和结论看,都十分对称美妙,数学家柯克特称它是初等几何最惊人的定理之一.
十一、随堂练习
教材P140中1、2
补充:判断
一组对边平行,一组对边相等的四边形是平行四边形
一组对角平行,一组对角相等的四边形是平行四边形
一组对边相等,一组对角相等的四边形是平行四边形
一组对边平行且相等的四边形是平行四边形
平行四边形的判定篇12七、教学步骤
【引入新课】
由的定义和性质易得且,即“平行且相等”记为,反过来当时,四边形必为平行四边形,这就是今天要讲的判定定理4.
【讲解新课】
平行四边形的判定定理4:一组对边平行且相等的四边形是平行四边形.
引导学生结合图1,把已知,求证具体化.
分析:因为已知,所以只须证出,为此只需连对角线,通过全等三角形来实现.
证明:
师:我们已经全面的掌握了平行四边形的判定方法,共有几个方法?哪几个?由学生归纳后用投影仪打出.
平行四边形判定等知识的综合应用
教师指出:平行四边形的有关知识同学们都已掌握,但如何灵活、综合、有效地用来解决有关问题是非常重要的.因此,对典型例题的分析、论证、方法技巧的探讨运用都必须引起重视.
例2已知:,分别是、的中点,结合图1,求证:.
分析:证明两条线段相等,从它们在图形中的位置看,可证明两个三角形全等或证明四边形为平行四边形
证明:.
此例题综合运用了平行四边形的性质和判定,证题思路是:先运用平行四边形的性质得到判定另一个四边形是平行四边形的条件,再应用平行四边形的性质得出结论;题目虽不复杂,但层次有三,且利用基础知识较多,因此应使学生获得清晰的证题思路.
例3画,使,,
【总结、扩展】
1.小结
平行四边形知识的运用包括三个方面:一是直接运用平行四边形的性质来解决某些问题,例如求角的度数,线段长度,证明角相等或互补,证明线段相等或倍分等;二是判定一个四边形是平行四边形,从而判定直线平行等;三是先判定一个四边形是平行四边形,然后再用四边形的性质来解决有关问题.
2.思考题:
已知:如图1,在△中,,.
求证:
八、布置作业
教材P143中11、12,P144中13、14
九、板书设计
十、背景知识与课外阅读
美妙的莫雷定理
已知:如图1,和,和,和分别为△的、、的三等分线.
求证:∠△是正三角形.
这是英国数学家富兰克·莫雷在1899年提出的,不管从已知条件和结论看,都十分对称美妙,数学家柯克特称它是初等几何最惊人的定理之一.
十一、随堂练习
教材P140中1、2
补充:判断
一组对边平行,一组对边相等的四边形是平行四边形
一组对角平行,一组对角相等的四边形是平行四边形
一组对边相等,一组对角相等的四边形是平行四边形
一组对边平行且相等的四边形是平行四边形
以上就是关于文章平行四边形的判定的全部内容,再次感谢您的阅读,祝您工作顺利。