等差数列前n项和

时间:2023-06-07 19:27:13 作者:教学文档 字数:28654字

范文小一网整理等差数列前n项和,旨在帮助更多人解决教学困扰,文章仅供参考,具体需要活学活用才是真正的有所帮助,下面随小编一起来看下相关文章等差数列前n项和吧。

等差数列前n项和

等差数列的前n项和

等差数列的前n项和篇1

教学目标

1.掌握等差数列前项和的公式,并能运用公式解决简单的问题.

了解等差数列前项和的定义,了解逆项相加的原理,理解等差数列前项和公式推导的过程,记忆公式的两种形式;

用方程思想认识等差数列前项和的公式,利用公式求;等差数列通项公式与前项和的公式两套公式涉及五个字母,已知其中三个量求另两个值;

会利用等差数列通项公式与前项和的公式研究的最值.

2.通过公式的推导和公式的运用,使学生体会从特殊到一般,再从一般到特殊的思维规律,初步形成认识问题,解决问题的一般思路和方法.

3.通过公式推导的过程教学,对学生进行思维灵活性与广阔性的训练,发展学生的思维水平.

4.通过公式的推导过程,展现数学中的对称美;通过有关内容在实际生活中的应用,使学生再一次感受数学源于生活,又服务于生活的实用性,引导学生要善于观察生活,从生活中发现问题,并数学地解决问题.

教学建议

知识结构

本节内容是等差数列前项和公式的推导和应用,首先通过具体的例子给出了求等差数列前项和的思路,而后导出了一般的公式,并加以应用;再与等差数列通项公式组成方程组,共同运用,解决有关问题.

重点、难点分析

教学重点是等差数列前项和公式的推导和应用,难点是公式推导的思路.

推导过程的展示体现了人类解决问题的一般思路,即从特殊问题的解决中提炼一般方法,再试图运用这一方法解决一般情况,所以推导公式的过程中所蕴含的思想方法比公式本身更为重要.等差数列前项和公式有两种形式,应根据条件选择适当的形式进行计算;另外反用公式、变用公式、前项和公式与通项公式的综合运用体现了方程思想.

高斯算法表现了大数学家的智慧和巧思,对一般学生来说有很大难度,但大多数学生都听说过这个故事,所以难点在于一般等差数列求和的思路上.

教法建议

①本节内容分为两课时,一节为公式推导及简单应用,一节侧重于通项公式与前项和公式综合运用.

②前项和公式的推导,建议由具体问题引入,使学生体会问题源于生活.

③强调从特殊到一般,再从一般到特殊的思考方法与研究方法.

④补充等差数列前项和的最大值、最小值问题.

⑤用梯形面积公式记忆等差数列前项和公式.

等差数列的前项和公式教学设计示例

教学目标

1.通过教学使学生理解等差数列的前项和公式的推导过程,并能用公式解决简单的问题.

2.通过公式推导的教学使学生进一步体会从特殊到一般,再从一般到特殊的思想方法,通过公式的运用体会方程的思想.

教学重点,难点

教学重点是等差数列的前项和公式的推导和应用,难点是获得推导公式的思路.

教学用具

实物投影仪,多媒体软件,电脑.

教学方法

讲授法.

教学过程

一.新课引入

提出问题:一个堆放铅笔的V形架的最下面一层放一支铅笔,往上每一层都比它下面一层多放一支,最上面一层放100支.这个V形架上共放着多少支铅笔?

问题就是“”

这是小学时就知道的一个故事,高斯的算法非常高明,回忆他是怎样算的.高斯算法的高明之处在于他发现这100个数可以分为50组,第一个数与最后一个数一组,第二个数与倒数第二个数一组,第三个数与倒数第三个数一组,…,每组数的和均相等,都等于101,50个101就等于5050了.高斯算法将加法问题转化为乘法运算,迅速准确得到了结果.

我们希望求一般的等差数列的和,高斯算法对我们有何启发?

二.讲解新课

等差数列前项和公式

1.公式推导

问题:设等差数列的首项为,公差为,由学生讨论,研究高斯算法对一般等差数列求和的指导意义.

思路一:运用基本量思想,将各项用和表示,得

,有以下等式

,问题是一共有多少个,似乎与的奇偶有关.这个思路似乎进行不下去了.

思路二:

上面的等式其实就是,为回避个数问题,做一个改写,,两式左右分别相加,得

于是有:.这就是倒序相加法.

思路三:受思路二的启发,重新调整思路一,可得,于是.

于是得到了两个公式:和.

2.公式记忆

用梯形面积公式记忆等差数列前项和公式,这里对图形进行了割、补两种处理,对应着等差数列前项和的两个公式.

3.公式的应用

公式中含有四个量,运用方程的思想,知三求一.

例1.求和:;

解题的关键是数清项数,小结数项数的方法.

例2.等差数列中前多少项的和是9900?

本题实质是反用公式,解一个关于的一元二次函数,注意得到的项数必须是正整数.

三.小结

1.推导等差数列前项和公式的思路;

2.公式的应用中的数学思想.

四.板书设计

等差数列的前n项和篇2

教学目标

1.掌握等差数列前项和的公式,并能运用公式解决简单的问题.

了解等差数列前项和的定义,了解逆项相加的原理,理解等差数列前项和公式推导的过程,记忆公式的两种形式;

用方程思想认识等差数列前项和的公式,利用公式求;等差数列通项公式与前项和的公式两套公式涉及五个字母,已知其中三个量求另两个值;

会利用等差数列通项公式与前项和的公式研究的最值.

2.通过公式的推导和公式的运用,使学生体会从特殊到一般,再从一般到特殊的思维规律,初步形成认识问题,解决问题的一般思路和方法.

3.通过公式推导的过程教学,对学生进行思维灵活性与广阔性的训练,发展学生的思维水平.

4.通过公式的推导过程,展现数学中的对称美;通过有关内容在实际生活中的应用,使学生再一次感受数学源于生活,又服务于生活的实用性,引导学生要善于观察生活,从生活中发现问题,并数学地解决问题.

教学建议

知识结构

本节内容是等差数列前项和公式的推导和应用,首先通过具体的例子给出了求等差数列前项和的思路,而后导出了一般的公式,并加以应用;再与等差数列通项公式组成方程组,共同运用,解决有关问题.

重点、难点分析

教学重点是等差数列前项和公式的推导和应用,难点是公式推导的思路.

推导过程的展示体现了人类解决问题的一般思路,即从特殊问题的解决中提炼一般方法,再试图运用这一方法解决一般情况,所以推导公式的过程中所蕴含的思想方法比公式本身更为重要.等差数列前项和公式有两种形式,应根据条件选择适当的形式进行计算;另外反用公式、变用公式、前项和公式与通项公式的综合运用体现了方程思想.

高斯算法表现了大数学家的智慧和巧思,对一般学生来说有很大难度,但大多数学生都听说过这个故事,所以难点在于一般等差数列求和的思路上.

教法建议

①本节内容分为两课时,一节为公式推导及简单应用,一节侧重于通项公式与前项和公式综合运用.

②前项和公式的推导,建议由具体问题引入,使学生体会问题源于生活.

③强调从特殊到一般,再从一般到特殊的思考方法与研究方法.

④补充等差数列前项和的最大值、最小值问题.

⑤用梯形面积公式记忆等差数列前项和公式.

等差数列的前项和公式教学设计示例

教学目标

1.通过教学使学生理解等差数列的前项和公式的推导过程,并能用公式解决简单的问题.

2.通过公式推导的教学使学生进一步体会从特殊到一般,再从一般到特殊的思想方法,通过公式的运用体会方程的思想.

教学重点,难点

教学重点是等差数列的前项和公式的推导和应用,难点是获得推导公式的思路.

教学用具

实物投影仪,多媒体软件,电脑.

教学方法

讲授法.

教学过程

一.新课引入

提出问题:一个堆放铅笔的V形架的最下面一层放一支铅笔,往上每一层都比它下面一层多放一支,最上面一层放100支.这个V形架上共放着多少支铅笔?

问题就是“”

这是小学时就知道的一个故事,高斯的算法非常高明,回忆他是怎样算的.高斯算法的高明之处在于他发现这100个数可以分为50组,第一个数与最后一个数一组,第二个数与倒数第二个数一组,第三个数与倒数第三个数一组,…,每组数的和均相等,都等于101,50个101就等于5050了.高斯算法将加法问题转化为乘法运算,迅速准确得到了结果.

我们希望求一般的等差数列的和,高斯算法对我们有何启发?

二.讲解新课

等差数列前项和公式

1.公式推导

问题:设等差数列的首项为,公差为,由学生讨论,研究高斯算法对一般等差数列求和的指导意义.

思路一:运用基本量思想,将各项用和表示,得

,有以下等式

,问题是一共有多少个,似乎与的奇偶有关.这个思路似乎进行不下去了.

思路二:

上面的等式其实就是,为回避个数问题,做一个改写,,两式左右分别相加,得

于是有:.这就是倒序相加法.

思路三:受思路二的启发,重新调整思路一,可得,于是.

于是得到了两个公式:和.

2.公式记忆

用梯形面积公式记忆等差数列前项和公式,这里对图形进行了割、补两种处理,对应着等差数列前项和的两个公式.

3.公式的应用

公式中含有四个量,运用方程的思想,知三求一.

例1.求和:;

解题的关键是数清项数,小结数项数的方法.

例2.等差数列中前多少项的和是9900?

本题实质是反用公式,解一个关于的一元二次函数,注意得到的项数必须是正整数.

三.小结

1.推导等差数列前项和公式的思路;

2.公式的应用中的数学思想.

四.板书设计

等差数列的前n项和篇3

教学目的:1.掌握等差数列前n项和公式及其获取思路.2.会用等差数列的前n项和公式解决一些简单的与前n项和有关的问题教学重点:等差数列n项和公式的理解、推导及应教学难点:灵活应用等差数列前n项公式解决一些简单的有关问题教学过程:一、复习引入:首先回忆一下前几节课所学主要内容:1.等差数列的定义:-=d,2.等差数列的通项公式:(或=pn+q(p、q是常数))3.几种计算公差d的方法:①d=-②d=③d=4.等差中项:成等差数列5.等差数列的性质:m+n=p+q(m,n,p,q∈n)6.伟大的数学家,天文学家,高斯十岁时计算1+2+…100的小故事,小高斯的计算方法启发我们下面要研究的求等差数列前n项和的一种很重要的思想方法,—“倒序相加”法。二、讲解新课:1.数列的前n项和的定义:数列中,称为数列的前n项和,记为.2.等差数列的前项和公式1:证明:①②①+②:∵∴由此得:13.等差数列的前项和公式2:把代入公式1即得:24.等差数列的前项和公式的函数解析式特征:公式2又可化成式子:,当d≠0,是一个常数项为零的二次式。5.用方程思想理解等差数列的通项公式与前n项和公式:等差数列的通项公式与前n项和公式反映了等差数列的五个基本元素:a1,d,n,an,sn之间的关系,从方程的角度看,它们可以构成两个独立方程,五元素中“知三求二”,解常规问题可以通过解方程或解方程组解决.三、例题讲解例1某长跑运动员7天里每天的训练量是:

7500

8000

8500

9000

9500

10000

1050

这位运动员7天共跑了多少米?例2等差数列-10,-6,-2,2,…前多少项的和是54?例3求集合m={m|m=7n,n∈n*,且m<100}中元素的个数,并求这些元素的和.例4.已知等差数列{}中=13且=,那么n取何值时,取最大值.解法1:设公差为d,由=得:3×13+3×2d/2=11×13+11×10d/2d=-2,=13-2(n-1),=15-2n,由即得:6.5≤n≤7.5,所以n=7时,取最大值.解法2:由解1得d=-2,又a1=13所以=-n+14n=-+49∴当n=7,取最大值。对等差数列前项和的最值问题有两种方法:利用:当>0,d<0,前n项和有最大值。可由≥0,且≤0,求得n的值。当<0,d>0,前n项和有最小值。可由≤0,且≥0,求得n的值。利用:由利用二次函数配方法求得最值时n的值。四、练习:已知一个等差数列的前10项的和是310,前20项的和是1220,求其前项和的公式.五、小结本节课学习了以下内容:1.等差数列的前项和公式1:2.等差数列的前项和公式2:3.,当d≠0,是一个常数项为零的二次式4.对等差数列前项和的最值问题有两种方法:利用:当>0,d<0,前n项和有最大值。可由≥0,且≤0,求得n的值。当<0,d>0,前n项和有最小值。可由≤0,且≥0,求得n的值。利用:二次函数配方法求得最值时n的值。六、作业:课本p118习题3.31、,2、,6,7,8.

等差数列的前n项和篇4

教学目标

1.把握等差数列前项和的公式,并能运用公式解决简单的问题.

(1)了解等差数列前项和的定义,了解逆项相加的原理,理解等差数列前项和公式推导的过程,记忆公式的两种形式;

(2)用方程思想熟悉等差数列前项和的公式,利用公式求;等差数列通项公式与前项和的公式两套公式涉及五个字母,已知其中三个量求另两个值;

(3)会利用等差数列通项公式与前项和的公式研究的最值.

2.通过公式的推导和公式的运用,使学生体会从非凡到一般,再从一般到非凡的思维规律,初步形成熟悉问题,解决问题的一般思路和方法.

3.通过公式推导的过程教学,对学生进行思维灵活性与广阔性的练习,发展学生的思维水平.

4.通过公式的推导过程,展现数学中的对称美;通过有关内容在实际生活中的应用,使学生再一次感受数学源于生活,又服务于生活的实用性,引导学生要善于观察生活,从生活中发现问题,并数学地解决问题.

教学建议

(1)知识结构

本节内容是等差数列前项和公式的推导和应用,首先通过具体的例子给出了求等差数列前项和的思路,而后导出了一般的公式,并加以应用;再与等差数列通项公式组成方程组,共同运用,解决有关问题.

(2)重点、难点分析

教学重点是等差数列前项和公式的推导和应用,难点是公式推导的思路.

推导过程的展示体现了人类解决问题的一般思路,即从非凡问题的解决中提炼一般方法,再试图运用这一方法解决一般情况,所以推导公式的过程中所蕴含的思想方法比公式本身更为重要.等差数列前项和公式有两种形式,应根据条件选择适当的形式进行计算;另外反用公式、变用公式、前项和公式与通项公式的综合运用体现了方程(组)思想.

高斯算法表现了大数学家的聪明和巧思,对一般学生来说有很大难度,但大多数学生都听说过这个故事,所以难点在于一般等差数列求和的思路上.

(3)教法建议

①本节内容分为两课时,一节为公式推导及简单应用,一节侧重于通项公式与前项和公式综合运用.

②前项和公式的推导,建议由具体问题引入,使学生体会问题源于生活.

③强调从非凡到一般,再从一般到非凡的思考方法与研究方法.

④补充等差数列前项和的最大值、最小值问题.

⑤用梯形面积公式记忆等差数列前项和公式.

等差数列的前项和公式教学设计示例

教学目标

1.通过教学使学生理解等差数列的前项和公式的推导过程,并能用公式解决简单的问题.

2.通过公式推导的教学使学生进一步体会从非凡到一般,再从一般到非凡的思想方法,通过公式的运用体会方程的思想.

教学重点,难点

教学重点是等差数列的前项和公式的推导和应用,难点是获得推导公式的思路.

教学用具

实物投影仪,多媒体软件,电脑.

教学方法

讲授法.

教学过程

一.新课引入

提出问题(播放媒体资料):一个堆放铅笔的v形架的最下面一层放一支铅笔,往上每一层都比它下面一层多放一支,最上面一层放100支.这个v形架上共放着多少支铅笔?(课件设计见课件展示)

问题就是(板书)“”

这是小学时就知道的一个故事,高斯的算法非常高明,回忆他是怎样算的.(由一名学生回答,再由学生讨论其高明之处)高斯算法的高明之处在于他发现这100个数可以分为50组,第一个数与最后一个数一组,第二个数与倒数第二个数一组,第三个数与倒数第三个数一组,…,每组数的和均相等,都等于101,50个101就等于5050了.高斯算法将加法问题转化为乘法运算,迅速准确得到了结果.

我们希望求一般的等差数列的和,高斯算法对我们有何启发?

二.讲解新课

(板书)等差数列前项和公式

1.公式推导(板书)

问题(幻灯片):设等差数列的首项为,公差为,由学生讨论,研究高斯算法对一般等差数列求和的指导意义.

思路一:运用基本量思想,将各项用和表示,得

,有以下等式

,问题是一共有多少个,似乎与的奇偶有关.这个思路似乎进行不下去了.

思路二:

上面的等式其实就是,为回避个数问题,做一个改写,,两式左右分别相加,得

,

于是有:.这就是倒序相加法.

思路三:受思路二的启发,重新调整思路一,可得,于是.

于是得到了两个公式(投影片):和.

2.公式记忆

用梯形面积公式记忆等差数列前项和公式,这里对图形进行了割、补两种处理,对应着等差数列前项和的两个公式.

3.公式的应用

公式中含有四个量,运用方程的思想,知三求一.

例1.求和:(1);

(2)(结果用表示)

解题的关键是数清项数,小结数项数的方法.

例2.等差数列中前多少项的和是9900?

本题实质是反用公式,解一个关于的一元二次函数,注重得到的项数必须是正整数.

三.小结

1.推导等差数列前项和公式的思路;

2.公式的应用中的数学思想.

四.板书设计

等差数列的前n项和篇5

教学目的:1.进一步熟练掌握等差数列的通项公式和前n项和公式.2.了解等差数列的一些性质,并会用它们解决一些相关问题.教学重点:熟练掌握等差数列的求和公式教学难点:灵活应用求和公式解决问题教学过程:一、复习引入:首先回忆一下上一节课所学主要内容:1.等差数列的前项和公式1:2.等差数列的前项和公式2:3.,当d≠0,是一个常数项为零的二次式4.对等差数列前项和的最值问题有两种方法:利用:当>0,d<0,前n项和有最大值。可由≥0,且≤0,求得n的值。当<0,d>0,前n项和有最小值。可由≤0,且≥0,求得n的值。利用:由二次函数配方法求得最值时n的值。二、例题讲解例1.已知等差数列的前项和为,前项和为,求前项和.解:由题设∴而例2已知一个等差数列的前四项和为21,后四项和为67,前n项和为286,求项数.

分析:若把有穷数列{an}的前n项和sn的平均值叫做数列的平均值,记为,即则sn=n.根据等差数列的性质易知,.(答案:n=26).

例3等差数列中,该数列的前多少项和最小?

思路1:求出sn的函数解析式,再求函数取得最小值时的n值.思路2:公差下为0的等差数列等差数列前n项和最小的条件为:思路3:由s9=s12得s12-s9=a10+a11+a12=0得a11=0.例4.已知数列{an}的前n项和,求数列{|an|}的前n项和tn.解:当时,∵n=1也适合上式,∴数列的通项公式为an=-3n+104()由an=-3n+104≥0得n≤34.7,即当n≤34时,an>0,当n≥35时an<0.(1)即当n≤34时,tn=|a1|+|a2|+…+|an|=a1+a2+…+an=.(2)当n≥35时,tn=|a1|+|a2|+…+|an|=(a1+a2+…+a34)-(a35+a36+…+an)=2(a1+a2+…+a34)-(a1+a2+…+an)=2s34-sn三、练习:1.一个等差数列前4项的和是24,前5项的和与前2项的和的差是27,求这个等差数列的通项公式.2.两个数列1,,,……,,5和1,,,……,,5均成等差数列公差分别是,,求与的值。3.在等差数列{}中,=-15,公差d=3,求数列{}的前n项和的最小值。四、作业:课时p119习题3.39,10,《精析精练》p122智能达标训练.

等差数列的前n项和篇6

教学目标

1.掌握等差数列前项和的公式,并能运用公式解决简单的问题.

了解等差数列前项和的定义,了解逆项相加的原理,理解等差数列前项和公式推导的过程,记忆公式的两种形式;

用方程思想认识等差数列前项和的公式,利用公式求;等差数列通项公式与前项和的公式两套公式涉及五个字母,已知其中三个量求另两个值;

会利用等差数列通项公式与前项和的公式研究的最值.

2.通过公式的推导和公式的运用,使学生体会从特殊到一般,再从一般到特殊的思维规律,初步形成认识问题,解决问题的一般思路和方法.

3.通过公式推导的过程教学,对学生进行思维灵活性与广阔性的训练,发展学生的思维水平.

4.通过公式的推导过程,展现数学中的对称美;通过有关内容在实际生活中的应用,使学生再一次感受数学源于生活,又服务于生活的实用性,引导学生要善于观察生活,从生活中发现问题,并数学地解决问题.

教学建议

知识结构

本节内容是等差数列前项和公式的推导和应用,首先通过具体的例子给出了求等差数列前项和的思路,而后导出了一般的公式,并加以应用;再与等差数列通项公式组成方程组,共同运用,解决有关问题.

重点、难点分析

教学重点是等差数列前项和公式的推导和应用,难点是公式推导的思路.

推导过程的展示体现了人类解决问题的一般思路,即从特殊问题的解决中提炼一般方法,再试图运用这一方法解决一般情况,所以推导公式的过程中所蕴含的思想方法比公式本身更为重要.等差数列前项和公式有两种形式,应根据条件选择适当的形式进行计算;另外反用公式、变用公式、前项和公式与通项公式的综合运用体现了方程思想.

高斯算法表现了大数学家的智慧和巧思,对一般学生来说有很大难度,但大多数学生都听说过这个故事,所以难点在于一般等差数列求和的思路上.

教法建议

①本节内容分为两课时,一节为公式推导及简单应用,一节侧重于通项公式与前项和公式综合运用.

②前项和公式的推导,建议由具体问题引入,使学生体会问题源于生活.

③强调从特殊到一般,再从一般到特殊的思考方法与研究方法.

④补充等差数列前项和的最大值、最小值问题.

⑤用梯形面积公式记忆等差数列前项和公式.

等差数列的前项和公式教学设计示例

教学目标

1.通过教学使学生理解等差数列的前项和公式的推导过程,并能用公式解决简单的问题.

2.通过公式推导的教学使学生进一步体会从特殊到一般,再从一般到特殊的思想方法,通过公式的运用体会方程的思想.

教学重点,难点

教学重点是等差数列的前项和公式的推导和应用,难点是获得推导公式的思路.

教学用具

实物投影仪,多媒体软件,电脑.

教学方法

讲授法.

教学过程

一.新课引入

提出问题:一个堆放铅笔的V形架的最下面一层放一支铅笔,往上每一层都比它下面一层多放一支,最上面一层放100支.这个V形架上共放着多少支铅笔?

问题就是“”

这是小学时就知道的一个故事,高斯的算法非常高明,回忆他是怎样算的.高斯算法的高明之处在于他发现这100个数可以分为50组,第一个数与最后一个数一组,第二个数与倒数第二个数一组,第三个数与倒数第三个数一组,…,每组数的和均相等,都等于101,50个101就等于5050了.高斯算法将加法问题转化为乘法运算,迅速准确得到了结果.

我们希望求一般的等差数列的和,高斯算法对我们有何启发?

二.讲解新课

等差数列前项和公式

1.公式推导

问题:设等差数列的首项为,公差为,由学生讨论,研究高斯算法对一般等差数列求和的指导意义.

思路一:运用基本量思想,将各项用和表示,得

,有以下等式

,问题是一共有多少个,似乎与的奇偶有关.这个思路似乎进行不下去了.

思路二:

上面的等式其实就是,为回避个数问题,做一个改写,,两式左右分别相加,得

于是有:.这就是倒序相加法.

思路三:受思路二的启发,重新调整思路一,可得,于是.

于是得到了两个公式:和.

2.公式记忆

用梯形面积公式记忆等差数列前项和公式,这里对图形进行了割、补两种处理,对应着等差数列前项和的两个公式.

3.公式的应用

公式中含有四个量,运用方程的思想,知三求一.

例1.求和:;

解题的关键是数清项数,小结数项数的方法.

例2.等差数列中前多少项的和是9900?

本题实质是反用公式,解一个关于的一元二次函数,注意得到的项数必须是正整数.

三.小结

1.推导等差数列前项和公式的思路;

2.公式的应用中的数学思想.

四.板书设计

等差数列的前n项和篇7

教学目标

1.通过教学使学生理解等差数列的前项和公式的推导过程,并能用公式解决简单的问题.

2.通过公式推导的教学使学生进一步体会从特殊到一般,再从一般到特殊的思想方法,通过公式的运用体会方程的思想.

教学重点,难点

教学重点是等差数列的前项和公式的推导和应用,难点是获得推导公式的思路.

教学用具

实物投影仪,多媒体软件,电脑.

教学方法

讲授法.

教学过程

一.新课引入

提出问题:一个堆放铅笔的V形架的最下面一层放一支铅笔,往上每一层都比它下面一层多放一支,最上面一层放100支.这个V形架上共放着多少支铅笔?

问题就是“”

这是小学时就知道的一个故事,高斯的算法非常高明,回忆他是怎样算的.高斯算法的高明之处在于他发现这100个数可以分为50组,第一个数与最后一个数一组,第二个数与倒数第二个数一组,第三个数与倒数第三个数一组,…,每组数的和均相等,都等于101,50个101就等于5050了.高斯算法将加法问题转化为乘法运算,迅速准确得到了结果.

我们希望求一般的等差数列的和,高斯算法对我们有何启发?

二.讲解新课

等差数列前项和公式

1.公式推导

问题:设等差数列的首项为,公差为,由学生讨论,研究高斯算法对一般等差数列求和的指导意义.

思路一:运用基本量思想,将各项用和表示,得

,有以下等式

,问题是一共有多少个,似乎与的奇偶有关.这个思路似乎进行不下去了.

思路二:

上面的等式其实就是,为回避个数问题,做一个改写,,两式左右分别相加,得

于是有:.这就是倒序相加法.

思路三:受思路二的启发,重新调整思路一,可得,于是.

于是得到了两个公式:和.

2.公式记忆

用梯形面积公式记忆等差数列前项和公式,这里对图形进行了割、补两种处理,对应着等差数列前项和的两个公式.

3.公式的应用

公式中含有四个量,运用方程的思想,知三求一.

例1.求和:;

解题的关键是数清项数,小结数项数的方法.

例2.等差数列中前多少项的和是9900?

本题实质是反用公式,解一个关于的一元二次函数,注意得到的项数必须是正整数.

三.小结

1.推导等差数列前项和公式的思路;

2.公式的应用中的数学思想.

四.板书设计

以上就是关于文章等差数列前n项和的全部内容,再次感谢您的阅读,祝您工作顺利。

标签云